scholarly journals Strategy for Determining the Stochastic Distance Characteristics of the 2D Laser Scanner Z + F Profiler 9012A with Special Focus on the Close Range

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2253 ◽  
Author(s):  
Erik Heinz ◽  
Markus Mettenleiter ◽  
Heiner Kuhlmann ◽  
Christoph Holst

Kinematic laser scanning with moving platforms has been used for the acquisition of 3D point clouds of our environment for many years. A main application of these mobile systems is the acquisition of the infrastructure, e.g., the road surface and buildings. Regarding this, the distance between laser scanner and object is often notably shorter than 20 m. In the close range, however, divergent incident laser light can lead to a deterioration of the precision of laser scanner distance measurements. In the light of this, we analyze the distance precision of the 2D laser scanner Z + F Profiler 9012A, purpose-built for kinematic applications, in the range of up to 20 m. In accordance with previous studies, a clear dependency between scan rate, intensity of the backscattered laser light and distance precision is evident, which is used to derive intensity-based stochastic models for the sensor. For this purpose, a new approach for 2D laser scanners is proposed that is based on the static scanning of surfaces with different backscatter. The approach is beneficial because the 2D laser scanner is operated in its normal measurement mode, no sophisticated equipment is required and no model assumptions for the scanned surface are made. The analysis reveals a lower precision in the range below 5 m caused by a decreased intensity. However, the Z + F Profiler 9012A is equipped with a special hardware-based close range optimization partially compensating for this. Our investigations show that this optimization works best at a distance of about 2 m. Although increased noise remains a critical factor in the close range, the derived stochastic models are also valid below 5 m.

Author(s):  
Shenglian lu ◽  
Guo Li ◽  
Jian Wang

Tree skeleton could be useful to agronomy researchers because the skeleton describes the shape and topological structure of a tree. The phenomenon of organs’ mutual occlusion in fruit tree canopy is usually very serious, this should result in a large amount of data missing in directed laser scanning 3D point clouds from a fruit tree. However, traditional approaches can be ineffective and problematic in extracting the tree skeleton correctly when the tree point clouds contain occlusions and missing points. To overcome this limitation, we present a method for accurate and fast extracting the skeleton of fruit tree from laser scanner measured 3D point clouds. The proposed method selects the start point and endpoint of a branch from the point clouds by user’s manual interaction, then a backward searching is used to find a path from the 3D point cloud with a radius parameter as a restriction. The experimental results in several kinds of fruit trees demonstrate that our method can extract the skeleton of a leafy fruit tree with highly accuracy.


Author(s):  
A. Pérez Ramos ◽  
G. Robleda Prieto

Indoor Gothic apse provides a complex environment for virtualization using imaging techniques due to its light conditions and architecture. Light entering throw large windows in combination with the apse shape makes difficult to find proper conditions to photo capture for reconstruction purposes. Thus, documentation techniques based on images are usually replaced by scanning techniques inside churches. Nevertheless, the need to use Terrestrial Laser Scanning (TLS) for indoor virtualization means a significant increase in the final surveying cost. So, in most cases, scanning techniques are used to generate dense point clouds. However, many Terrestrial Laser Scanner (TLS) internal cameras are not able to provide colour images or cannot reach the image quality that can be obtained using an external camera. Therefore, external quality images are often used to build high resolution textures of these models. This paper aims to solve the problem posted by virtualizing indoor Gothic churches, making that task more affordable using exclusively techniques base on images. It reviews a previous proposed methodology using a DSRL camera with 18-135 lens commonly used for close range photogrammetry and add another one using a HDR 360° camera with four lenses that makes the task easier and faster in comparison with the previous one. Fieldwork and office-work are simplified. The proposed methodology provides photographs in such a good conditions for building point clouds and textured meshes. Furthermore, the same imaging resources can be used to generate more deliverables without extra time consuming in the field, for instance, immersive virtual tours. In order to verify the usefulness of the method, it has been decided to apply it to the apse since it is considered one of the most complex elements of Gothic churches and it could be extended to the whole building.


Author(s):  
T. Zieher ◽  
M. Bremer ◽  
M. Rutzinger ◽  
J. Pfeiffer ◽  
P. Fritzmann ◽  
...  

<p><strong>Abstract.</strong> Multi-temporal 3D point clouds acquired with a laser scanner can be efficiently used for an area-wide assessment of landslide-induced surface changes. In the present study, displacements of the Vögelsberg landslide (Tyrol, Austria) are assessed based on available data acquired with airborne laser scanning (ALS) in 2013 and data acquired with an unmanned aerial vehicle (UAV) equipped with a laser scanner (ULS) in 2018. Following the data pre-processing steps including registration and ground filtering, buildings are segmented and extracted from the datasets. The roofs, represented as multi-temporal 3D point clouds are then used to derive displacement vectors with a novel matching tool based on the iterative closest point (ICP) algorithm. The resulting mean annual displacements are compared to the results of a geodetic monitoring based on an automatic tracking total station (ATTS) measuring 53 retroreflective prisms across the study area every hour since May 2016. In general, the results are in agreement concerning the mean annual magnitude (ATTS: 6.4&amp;thinsp;cm within 2.2 years, 2.9&amp;thinsp;cm a<sup>&amp;minus;1</sup>; laser scanning data: 13.2&amp;thinsp;cm within 5.4 years, 2.4&amp;thinsp;cm a<sup>&amp;minus;1</sup>) and direction of the derived displacements. The analysis of the laser scanning data proved suitable for deriving long-term landslide displacements and can provide additional information about the deformation of single roofs.</p>


Author(s):  
A. Pérez Ramos ◽  
G. Robleda Prieto

Indoor Gothic apse provides a complex environment for virtualization using imaging techniques due to its light conditions and architecture. Light entering throw large windows in combination with the apse shape makes difficult to find proper conditions to photo capture for reconstruction purposes. Thus, documentation techniques based on images are usually replaced by scanning techniques inside churches. Nevertheless, the need to use Terrestrial Laser Scanning (TLS) for indoor virtualization means a significant increase in the final surveying cost. So, in most cases, scanning techniques are used to generate dense point clouds. However, many Terrestrial Laser Scanner (TLS) internal cameras are not able to provide colour images or cannot reach the image quality that can be obtained using an external camera. Therefore, external quality images are often used to build high resolution textures of these models. This paper aims to solve the problem posted by virtualizing indoor Gothic churches, making that task more affordable using exclusively techniques base on images. It reviews a previous proposed methodology using a DSRL camera with 18-135 lens commonly used for close range photogrammetry and add another one using a HDR 360° camera with four lenses that makes the task easier and faster in comparison with the previous one. Fieldwork and office-work are simplified. The proposed methodology provides photographs in such a good conditions for building point clouds and textured meshes. Furthermore, the same imaging resources can be used to generate more deliverables without extra time consuming in the field, for instance, immersive virtual tours. In order to verify the usefulness of the method, it has been decided to apply it to the apse since it is considered one of the most complex elements of Gothic churches and it could be extended to the whole building.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Omar Al Khalil

During the past few years, new developments have occurred in the field of 3D photogrammetric modeling of culture heritage. One of these developments is the expansion of 3D photogrammetric modeling open-source software, such as VisualSfM, and cost-effective licensed software, such as Agisoft Metashape into the practical and affordable world. This type of SfM (Structure from Motion) software offers the world of 3D modelling of culture heritage a powerful tool for documentation and visualization. On the other hand, low-cost cameras are now available on the market. These cameras are characterized by high resolution and good quality lens, which makes them suitable for photogrammetric modelling. This paper reports on the results of the application of a SfM photogrammetry system in the 3D modelling of Safita Tower, a medieval structure in Safita, north-western Syria. The applied photogrammetric system consists of the Nikon Coolpix P100 10 MP digital camera and the commercial software Agisoft Metashape. The resulted 3D point clouds were compared with an available dense point cloud acquired by a laser scanner. This comparison proved that the low-cost SfM photogrammetry is an accurate methodology to 3D modeling historical monuments. 


Data ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 103
Author(s):  
Christoph Gollob ◽  
Tim Ritter ◽  
Arne Nothdurft

In forest inventory, trees are usually measured using handheld instruments; among the most relevant are calipers, inclinometers, ultrasonic devices, and laser range finders. Traditional forest inventory has been redesigned since modern laser scanner technology became available. Laser scanners generate massive data in the form of 3D point clouds. We have developed a novel methodology to provide estimates of the tree positions, stem diameters, and tree heights from these 3D point clouds. This dataset was made publicly accessible to test new software routines for the automatic measurement of forest trees using laser scanner data. Benchmark studies with performance tests of different algorithms are welcome. The dataset contains co-registered raw 3D point-cloud data collected on 20 forest inventory sample plots in Austria. The data were collected by two different laser scanning systems: (1) A mobile personal laser scanner (PLS) (ZEB Horizon, GeoSLAM Ltd., Nottingham, UK) and (2) a static terrestrial laser scanner (TLS) (Focus3D X330, Faro Technologies Inc., Lake Mary, FL, USA). The data also contain digital terrain models (DTMs), field measurements as reference data (ground-truth), and the output of recent software routines for the automatic tree detection and the automatic stem diameter measurement.


Author(s):  
L. Winiwarter ◽  
K. Anders ◽  
D. Wujanz ◽  
B. Höfle

Abstract. Terrestrial laser scanners are commonly used for remotely sensing natural surfaces into 3D point clouds. Time series of such 3D point clouds can be analysed to gain information of surface changes that are induced by Earth surface shaping processes. The atomic unit in time series analysis is a bitemporal change detection and quantification. This should involve an estimation of the minimum quantifiable change, the Level of Detection, to separate signal from noise, e.g. stemming from the measurement. To enable such an estimation through error propagation, a model of the sensing instrument’s measurement uncertainty is required. In this work, we present an investigation on the ranging component of terrestrial laser scanning on this uncertainty and its influence on 3D distances between point clouds of two epochs. Specifically, we analyse the effects of incidence angle, intensity and range for different object materials, and make additional considerations with respect to waveform information returned by the sensor. We estimate a model for the rangefinder uncertainty of a terrestrial laser scanner and apply it on experimental data. The results show that using a sensor-specific model of ranging uncertainty allows an appropriate estimation of the Level of Detection. At a range of 60 m and a rotational displacement of 10°, this Level of Detection ranges between 0.1 mm to 1 mm for a white and a grey surface and up to 5 mm for a black surface. The completeness of the detection of significant change ranges from 60.2 % (black) to 89.8 % (grey) for the proposed method and from 65.5 % to 88.9 % for the baseline, when compared to tachymeter measurements. The similarity between the results is expected and suggests the validity of error propagation for the derivation of the Level of Detection.


2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

Terrestrial laser scanners (TLS) capture a large number of 3D points rapidly, with high precision and spatial resolution. These scanners are used for applications as diverse as modeling architectural or engineering structures, but also high-resolution mapping of terrain. The noise of the observations cannot be assumed to be strictly corresponding to white noise: besides being heteroscedastic, correlations between observations are likely to appear due to the high scanning rate. Unfortunately, if the variance can sometimes be modeled based on physical or empirical considerations, the latter are more often neglected. Trustworthy knowledge is, however, mandatory to avoid the overestimation of the precision of the point cloud and, potentially, the non-detection of deformation between scans recorded at different epochs using statistical testing strategies. The TLS point clouds can be approximated with parametric surfaces, such as planes, using the Gauss–Helmert model, or the newly introduced T-splines surfaces. In both cases, the goal is to minimize the squared distance between the observations and the approximated surfaces in order to estimate parameters, such as normal vector or control points. In this contribution, we will show how the residuals of the surface approximation can be used to derive the correlation structure of the noise of the observations. We will estimate the correlation parameters using the Whittle maximum likelihood and use comparable simulations and real data to validate our methodology. Using the least-squares adjustment as a “filter of the geometry” paves the way for the determination of a correlation model for many sensors recording 3D point clouds.


2021 ◽  
Vol 13 (8) ◽  
pp. 1584
Author(s):  
Pedro Martín-Lerones ◽  
David Olmedo ◽  
Ana López-Vidal ◽  
Jaime Gómez-García-Bermejo ◽  
Eduardo Zalama

As the basis for analysis and management of heritage assets, 3D laser scanning and photogrammetric 3D reconstruction have been probed as adequate techniques for point cloud data acquisition. The European Directive 2014/24/EU imposes BIM Level 2 for government centrally procured projects as a collaborative process of producing federated discipline-specific models. Although BIM software resources are intensified and increasingly growing, distinct specifications for heritage (H-BIM) are essential to driving particular processes and tools to efficiency shifting from point clouds to meaningful information ready to be exchanged using non-proprietary formats, such as Industry Foundation Classes (IFC). This paper details a procedure for processing enriched 3D point clouds into the REVIT software package due to its worldwide popularity and how closely it integrates with the BIM concept. The procedure will be additionally supported by a tailored plug-in to make high-quality 3D digital survey datasets usable together with 2D imaging, enhancing the capability to depict contextualized important graphical data to properly planning conservation actions. As a practical example, a 2D/3D enhanced combination is worked to accurately include into a BIM project, the length, orientation, and width of a big crack on the walls of the Castle of Torrelobatón (Spain) as a representative heritage building.


Sign in / Sign up

Export Citation Format

Share Document