scholarly journals Physical Extraction and Feature Fusion for Multi-Mode Signals in a Measurement System for Patients in Rehabilitation Exoskeleton

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2588 ◽  
Author(s):  
Canjun Yang ◽  
Qianxiao Wei ◽  
Xin Wu ◽  
Zhangyi Ma ◽  
Qiaoling Chen ◽  
...  

Measurement system of exoskeleton robots can reflect the state of the patient. In this study, we combined an inertial measurement unit and a visual measurement unit to obtain a repeatable fusion measurement system to compensate for the deficiencies of the single data acquisition mode used by exoskeletons. Inertial measurement unit is comprised four distributed angle sensors. Triaxial acceleration and angular velocity information were transmitted to an upper computer by Bluetooth. The data sent to the control center were processed by a Kalman filter to eliminate any noise. Visual measurement unit uses camera to acquire real time images and related data information. The two data acquisition methods were fused and have its weight. Comparisons of the fusion results with individual measurement results demonstrated that the data fusion method could effectively improve the accuracy of system. It provides a set of accurate real-time measurements for patients in rehabilitation exoskeleton and data support for effective control of exoskeleton robot.

2018 ◽  
Vol 64 (2) ◽  
pp. 240-248 ◽  
Author(s):  
Tong-Hun Hwang ◽  
Julia Reh ◽  
Alfred O. Effenberg ◽  
Holger Blume

2013 ◽  
Vol 364 ◽  
pp. 228-232
Author(s):  
Wei Tian Wang ◽  
Quan Jun Song ◽  
Yu Man Nie ◽  
Bu Yun Wang ◽  
Hong Yu Ren ◽  
...  

Kinetic information acquisition of shot throwing is significant for the train of shot put athletes. This paper presents a novel sensor system based on a 9 degrees of freedom inertial measurement unit, which provides attitude information of shot throwing in real time. The sensor system is designed with modularized structure and installed in the digital shot which has almost the same size and weight as the standard shot for females. A multi-target and multi-parameter information acquisition platform is constructed to acquire kinematics information. With the help of the sensor system, the coaches can combine attitude information with kinematics data to analyze the shot throwing movements.


2021 ◽  
Vol 906 (1) ◽  
pp. 012069
Author(s):  
Stanislav Hodas ◽  
Jana Izvoltova ◽  
Donatas Rekus

Abstract The inertial measurement unit is an electronic device built-in practically in any controlled or autonomous technology used for land mapping. It is based on a combination of accelerometers and gyroscopes and sometimes magnetometers used for relative orientation and navigation. The paper is focused on functions and trends of an inertial measurement unit, which is a part of inertial navigation indicator of position and velocity of moving devices on the ground, above and below ground in real-time.


Robotica ◽  
2012 ◽  
Vol 30 (7) ◽  
pp. 1203-1212 ◽  
Author(s):  
Hugo Romero ◽  
Sergio Salazar ◽  
Rogelio Lozano

SUMMARYIn this paper we address the problem of stabilization and local positioning of a four-rotor rotorcraft using computer vision. Our approaches to estimate the orientation and position of the rotorcraft combine the measurements from an Inertial Measurement Unit (IMU) and a vision system composed of a single camera. In the first stage, the vision system is used to estimate the position and yaw angle of the rotorcraft, while in the second stage the vision system is used to estimate the translational velocity of the flying robot. In both cases the IMU gives the pitch and roll angles at a higher rate. The technique used to estimate the position of the rotorcraft in the first stage combines the homogeneous transformation approach for the camera calibration process with the plane-based pose method for estimating the position. In the second stage, a navigation system using the optical flow is also developed to estimate the translational velocity of the aircraft. We present real-time experiments of stabilization and location of a four-rotor rotorcraft.


2018 ◽  
Vol 8 (12) ◽  
pp. 2470 ◽  
Author(s):  
Ye Wang ◽  
Hua Li ◽  
Bingjun Wan ◽  
Xiang Zhang ◽  
Gongbing Shan

The hammer throw is one of the regular track and field competitions, but unlike other events, it has not seen a new world record for over three decades. The standstill may be caused by the lack of scientifically based training. In our previous work, we have developed a wireless/wearable device for the wire tension measurement in order to develop real-time biomechanical feedback training. In this paper, we show the improvement of our wearable system by adding two sensors for tracking of two vital vertical distances. The paper describes the details related to the development of turning an inertial measurement unit into a tracking device for the dynamic distances. Our preliminary data has shown that the dynamic data of the hip and wrist could be used for revealing the coordination between the upper and the lower limbs during a throw. In conjunction with wearable wire-tension measurement, various motor control patterns employed for hammer throwing could be demystified. Such real-time information could be valuable for hammer-throw learning and optimization. Further studies are required to verify the potentials of the wearable system for its efficiency and effectiveness in coaching practice.


Sign in / Sign up

Export Citation Format

Share Document