scholarly journals A Novel Method for the Micro-Clearance Measurement of a Precision Spherical Joint Based on a Spherical Differential Capacitive Sensor

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3366 ◽  
Author(s):  
Wen Wang ◽  
He Yang ◽  
Min Zhang ◽  
Zhanfeng Chen ◽  
Guang Shi ◽  
...  

A spherical joint is a commonly used mechanical hinge with the advantages of compact structure and good flexibility, and it becomes a key component in many types of equipment, such as parallel mechanisms, industrial robots, and automobiles. Real-time detection of a precision spherical joint clearance is of great significance in analyzing the motion errors of mechanical systems and improving the transmission accuracy. This paper presents a novel method for the micro-clearance measurement with a spherical differential capacitive sensor (SDCS). First, the structure and layout of the spherical capacitive plates were designed according to the measuring principle of capacitive sensors with spacing variation. Then, the mathematical model for the spatial eccentric displacements of the ball and the differential capacitance was established. In addition, equipotential guard rings were used to attenuate the fringe effect on the measurement accuracy. Finally, a simulation with Ansoft Maxwell software was carried out to calculate the capacitance values of the spherical capacitors at different eccentric displacements. Simulation results indicated that the proposed method based on SDCS was feasible and effective for the micro-clearance measurement of the precision spherical joints with small eccentricity.

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2694 ◽  
Author(s):  
Wen Wang ◽  
Wenjun Qiu ◽  
He Yang ◽  
Haimei Wu ◽  
Guang Shi ◽  
...  

Due to the flexible and compact structures, spherical joints are widely used in parallel manipulators and industrial robots. Real-time detection of the clearance between the ball and the socket in spherical joints is beneficial to compensate motion errors of mechanical systems and improve their transmission accuracy. This work proposes an improved capacitive sensor for detecting the micro-clearance of spherical joints. First, the structure of the capacitive sensor is proposed. Then, the mathematical model for the differential capacitance of the sensor and the eccentric micro-displacement of the ball is deduced. Finally, the capacitance values of the capacitive sensor are simulated with Ansoft Maxwell. The simulated values of the differential capacitances at different eccentric displacements agree well with the theoretical ones, indicating the feasibility of the proposed detection method. In addition, the simulated results show that the proposed capacitive sensor could effectively reduce the capacitive fringe effect, improving the measurement accuracy.


Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 280 ◽  
Author(s):  
Wen Wang ◽  
He Yang ◽  
Min Zhang ◽  
Zhanfeng Chen ◽  
Guang Shi ◽  
...  

Precision spherical joints are commonly employed as multiple degree-of-freedom (DOF) mechanical hinges in many engineering applications, e.g., robots and parallel manipulators. Real-time and precise measurement of the rotational angles of spherical joints is not only beneficial to the real-time and closed-loop control of mechanical transmission systems, but also is of great significance in the prediction and compensation of their motion errors. This work presents a novel approach for rotational angle measurement of spherical joints with a capacitive sensor. First, the 3-DOF angular motions of a spherical joint were analyzed. Then, the structure of the proposed capacitive sensor was presented, and the mathematical model for the rotational angles of a spherical joint and the capacitance of the capacitors was deduced. Finally, the capacitance values of the capacitors at different rotations were simulated using Ansoft Maxwell software. The simulation results show that the variation in the simulated capacitance values of the capacitors is similar to that of the theoretical values, suggesting the feasibility and effectiveness of the proposed capacitive detection method for rotational angles of spherical joints.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 837 ◽  
Author(s):  
Wen Wang ◽  
Wenjun Qiu ◽  
He Yang ◽  
Keqing Lu ◽  
Zhanfeng Chen ◽  
...  

Spherical joints have attracted increasing interest in the engineering applications of machine tools, industrial robots, medical equipment, and so on. As one of the promising methods of detecting the micro-clearance in spherical joints, the measurement accuracy of a spherical capacitive sensor could be affected by imperfectness during the manufacturing and installation of the sensor. This work presents error analysis of a spherical capacitive sensor with a differential structure and explores the dependence of the differential capacitance on manufacturing and the installation imperfectness. Five error sources are examined: the shape of the ball and the capacitive plate, the axial and radial offset of the plate, and the inclined installation of the plate. The mathematical models for calculating the capacitance errors of the spherical capacitive sensor are deduced and validated through a simulation using Ansoft Maxwell. The results show that the measurement accuracy of the spherical capacitive sensor is significantly affected by the shape of plates and ball, the axial offset, and the inclined angle of the plate. In contrast, the effect of the radial offset of the plate is quite small.


Author(s):  
Iman Kardan ◽  
Alireza Akbarzadeh ◽  
Ali Mousavi Mohammadi

Purpose This paper aims to increase the safety of the robots’ operation by developing a novel method for real-time implementation of velocity scaling and obstacle avoidance as the two widely accepted safety increasing concepts. Design/methodology/approach A fuzzy version of dynamic movement primitive (DMP) framework is proposed as a real-time trajectory generator with imbedded velocity scaling capability. Time constant of the DMP system is determined by a fuzzy system which makes decisions based on the distance from obstacle to the robot’s workspace and its velocity projection toward the workspace. Moreover, a combination of the DMP framework with a human-like steering mechanism and a novel configuration of virtual impedances is proposed for real-time obstacle avoidance. Findings The results confirm the effectiveness of the proposed method in real-time implementation of the velocity scaling and obstacle avoidance concepts in different cases of single and multiple stationary obstacles as well as moving obstacles. Practical implications As the provided experiments indicate, the proposed method can effectively increase the real-time safety of the robots’ operations. This is achieved by developing a simple method with low computational loads. Originality/value This paper proposes a novel method for real-time implementation of velocity scaling and obstacle avoidance concepts. This method eliminates the need for modification of original DMP formulation. The velocity scaling concept is implemented by using a fuzzy system to adjust the DMP’s time constant. Furthermore, the novel impedance configuration makes it possible to obtain a non-oscillatory convergence to the desired path, in all degrees of freedom.


2013 ◽  
Vol 328 ◽  
pp. 644-650 ◽  
Author(s):  
E. Oliva ◽  
G. Berselli ◽  
F. Pini

This paper proposes a fast and on-site method for the dynamic identification of industrial robots from low-sampled position and torque data. Owing to the basic architecture of the employed controller, only trapezoidal-velocity trajectories can be enforced for identification purposes. Differently from previous literature, where this kind of trajectories were performed with limited joint velocities and range of motions, the procedure proposed hereafter is characterized by fast movements performed on wide angular ranges. Furthermore, in order to identify the influence of friction without deriving complex friction models, a novel method is outlined that decouples frictional torques from gravitational, centrifugal and inertial ones. Finally, although multiple experiments of different kinds have been performed, inertial parameters are determined in one singular step, thus avoiding possible error increase due to sequential identification algorithms.


Author(s):  
Hodjat Pendar ◽  
Maryam Mahnama ◽  
Hassan Zohoor

A parallel manipulator is a closed loop mechanism in which a moving platform is connected to the base by at least two serial kinematic chains. The main problem engaged in these mechanisms, is their restricted working space as a result of singularities. In order to tackle these problems, many methods have been introduced by scholars. However, most of the mentioned methods are too much time consuming and need a great amount of computations. They also in most cases do not provide a good insight to the existence of singularity for the designer. In this paper a novel approach is introduced and utilized to identify singularities in parallel manipulators. By applying the new method, one could get a better understanding of geometrical interpretation of singularities in parallel mechanisms. Here we have introduced the Constraint Plane Method (CPM) and some of its applications in parallel mechanisms. The main technique used here, is based on Ceva Theorem.


Author(s):  
Qilong Yuan ◽  
I-Ming Chen ◽  
Teguh Santoso Lembono

Purpose Taping, covering objects with masking tapes, is a common process before conducting surface treatments such as plasma spraying and painting. Manual taping is tedious and takes a lot of effort of the workers. This paper aims to introduce an automatic agile robotic system and corresponding algorithm to do the surface taping. Design/methodology/approach The taping process is a special process which requires correct tape orientation and proper allocation of the masking tape for the coverage. This paper discusses on the design of the novel automatic system consisting of a robot manipulator, a rotating platform, a 3D scanner and a specially designed novel taping end-effectors. Meanwhile, the taping path planning to cover the region of interests is introduced. Findings Currently, cylindrical and freeform surfaces have been tested. With improvements on new sets of taping tools and more detailed taping method, taping of general surfaces can be conducted using such system in future. Originality/value The introduced taping path planning method is a novel method first talking about the mathematical model of the taping process. Such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to replace the work of human in such tedious and time-consuming works.


Blood ◽  
2008 ◽  
Vol 111 (2) ◽  
pp. 643-650 ◽  
Author(s):  
Ramzi Ajjan ◽  
Bernard C. B. Lim ◽  
Kristina F. Standeven ◽  
Robert Harrand ◽  
Sarah Dolling ◽  
...  

Fibrinogen BβArg448Lys is a common polymorphism, positioned within the carboxyl terminus of the Bβ-chain of the molecule. Studies suggest that it is associated with severity of coronary artery disease and development of stroke. The effects of the amino acid substitution on clot structure remains controversial, and the aim of this study was to investigate the effect(s) of this polymorphism on fibrin clot structure using recombinant techniques. Permeation, turbidity, and scanning electron microscopy showed that recombinant Lys448 fibrin had a significantly more compact structure, with thin fibers and small pores, compared with Arg448. Clot stiffness, measured by means of a novel method using magnetic tweezers, was significantly higher for the Lys448 compared with the Arg448 variant. Clots made from recombinant protein variants had similar lysis rates outside the plasma environment, but when added to fibrinogen-depleted plasma, the fibrinolysis rates for Lys448 were significantly slower compared with Arg448. This study demonstrates for the first time that clots made from recombinant BβLys448 fibrinogen are characterized by thin fibers and small pores, show increased stiffness, and appear more resistant to fibrinolysis. Fibrinogen BβArg448Lys is a primary example of common genetic variation with a significant phenotypic effect at the molecular level.


2021 ◽  
Vol 2085 (1) ◽  
pp. 012014
Author(s):  
Haoran Wang ◽  
Fucong Liu ◽  
Sai Lou

Abstract In order to improve the stiffness of the spherical joint of the robot, reduce the difficulty of manufacturing and the complexity of the control system, this paper proposed a method of spherical joint and digital drive of the robot based on the electromagnetic principle. Firstly, introduces the structure and motion principle of the spherical joint of the robot, establishes the mathematical model of the spherical joint and establishes the dynamic model according to the second Lagrange equation. after that, the relationship between the number of ampire-turns of the electromagnet on the spherical joint, the attitude Angle of the rotor and the force of the rotor was obtained by simulating the single degree of freedom of the joint based on Ansys maxwell and Matlab, which provided a basis for the realization of the digital drive of the spherical joint.


Sign in / Sign up

Export Citation Format

Share Document