scholarly journals Distance-Based Paper Device Combined with Headspace Extraction for Determination of Cyanide

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2340 ◽  
Author(s):  
Papichaya Khatha ◽  
Thanyarat Phutthaphongloet ◽  
Phenphitcha Timpa ◽  
Benjawan Ninwong ◽  
Kamolwich Income ◽  
...  

We report for the first time a distance-based paper device based on gold/silver core shell nanoparticles (Au@Ag NPs) for a simple, inexpensive, instrument-free, and portable determination of cyanide by the naked eye. Au@Ag NPs immobilized on a paper channel were etched by cyanide ions so that a yellow color band length of Au@Ag NPs is proportional to a decrease in the cyanide concentration. Quantification is achieved by measuring color length, thus eliminating the need to differentiate hues and intensities by the user, and the processing data of each imaging device. Moreover, the paper-based headspace extraction was combined with the distance-based paper device to improve the sensitivity. The enrichment factor was found to be 30-fold and the linearity was found in the range 0.05–1 mg L−1. The naked eye detection limit was 10 μg L−1 where the World Health Organization (WHO) have regulated the maximum level of cyanide in drinking water as 70 μg L−1. Our proposed device also showed no interference from common cations and anions presenting in seawater and waste water including thiocyanate, chloride. Finally, our device has been successfully applied to determine cyanide ions in seawater, drinking water, tap water and wastewater providing satisfactory precision and accuracy.

1999 ◽  
Vol 34 (2) ◽  
pp. 305-316 ◽  
Author(s):  
E.H. Bakraji ◽  
J. Karajo

Abstract Total reflection X-ray fluorescence spectrometry and chemical preconcentration have been applied for multi-elemental analysis of Damascus drinking water. Water was taken directly from taps of several city sectors and analyzed for the following trace elements: Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Se and Pb. The detection limits were found to be in the range of 0.1 to 0.4 µg/L. The mean levels of trace elements in the Damascus drinking water were below the World Health Organization drinking water quality guidelines.


2014 ◽  
Vol 4 (3) ◽  
pp. 384-390 ◽  
Author(s):  
Bayeh Abera ◽  
Mulugeta Kibret ◽  
Goraw Goshu ◽  
Mulat Yimer

A cross-sectional study was conducted to determine the bacterial quality and antimicrobial susceptibility profiles of Enterobacteriaceae from drinking water in Bahir Dar city. A total of 140 water samples were collected in the wet and dry periods from springs (n = 4), reservoirs (n = 10) and private tap water at households (n = 126). Bacteriological analysis of water was conducted using multiple tube method. Overall, 21.4%, 18.6% and 17.8% of drinking water samples had total coliforms (TC), faecal coliforms (FC) and Escherichia coli, respectively. All spring water samples and 29.2% of private tap water had the highest TC load (18 most probable number/100 mL, 95% CI: 100). For FC, 81.4% of the drinking water supplies tested complied with both World Health Organization and Ethiopian Standards. High levels of resistance (98–100%) were observed for ampicillin by Enterobacteriaceae and Pseudomonas aeruginosa. All P. aeruginosa isolates and 20 (66.7%) of E. coli revealed multiple drug resistance. Enterobacteriaceae and P. aeruginosa isolates exhibited high levels of antimicrobial resistance. The bacterial quality of drinking water in Bahir Dar city was poor. Microbial surveillance and monitoring with periodic assessment on physical integrity of the water pipelines need to be undertaken.


2013 ◽  
Vol 13 (5) ◽  
pp. 1257-1264 ◽  
Author(s):  
F. Q. Huang ◽  
M. Y. Ruan ◽  
J. D. Yan ◽  
H. C. Hong ◽  
H. J. Lin ◽  
...  

Halonitromethanes (HNMs) in drinking water are increasingly becoming a public concern due to their high health risks, so development of a sensitive method for their analysis has become a priority. Liquid–liquid extraction (LLE) method is dominantly used in current studies regarding HNMs. However the sensitivity is far from ideal. The present study aims to investigate the factors that may influence the extraction efficiency during HNM analysis by LLE method, and as a result develop a more sensitive extraction method for HNM determination. Results showed that the dose of sodium sulfate exerted the most significant influence, followed by copper sulfate, while the pH and manual shaking times have little effect. Under the suitable conditions (for extracting HNMs in 45 mL water: pH = 3.5–5, CuSO4 = 1.0 g, Na2SO4 = 6 g, shaking times = 120–180), the correlation coefficients (r) of the calibration curves for nine HNMs were all more than 0.9925. The method detection limit (MDL) ranged from 0.017 to 0.217 μg L−1 with an average of 0.076 μg L−1, which was dominantly lower than the method reported. The recovery (spiked blank samples: 98–108%; spiked tap water: 81–120%) and precision (relative standard deviation: 0.46–6.72) also showed good reliability and reproducibility of the method. Finally, the developed method was applied to the determination of HNMs in real water samples.


Author(s):  
Sreenath Bolisetty ◽  
Akram Rahimi ◽  
Raffaele Mezzenga

Tap water quality in Peru fails to meet the world health organization (WHO) drinking water standards; consequently, the local population in Peru has been exposed over the last years to...


Author(s):  

Analysis of the 222Rn specific activity in water of three springs situated in Western outskirts of Yekaterinburg, out of the well that is the main drinking water source in the Palkinsky Torfyanning community, as well as the Yekaterinburg tap water has been carried out. Assessment of the radon content fluctuations over the period from January to November, 2013 in water of one of the sources under study has been done.


Author(s):  
Aron Hakonen ◽  
Niklas Strömberg

Drinking water contamination of lead from various environmental sources, leaching consumer products and intrinsic water-pipe infrastructure is still today a matter of great concern. Therefore, new highly sensitive and convenient Pb2+ measurement schemes are necessary, especially for in-situ measurements at a low-cost. Within this work dye/ionophore/Pb2+ co-extraction and effective water phase de-colorization was utilized for highly sensitive lead measurements and sub-ppb naked-eye detection. A low-cost ionophore Benzo-18-Crown-6-ether was used, and a simple test-tube mix and separate procedure was developed. Instrumental detection limits were in the low ppt region (LOD=3, LOQ=10), and naked-eye detection was 500 ppt. Note, however, that this sensing scheme still has improvement potential as concentrations of fluorophore and ionophore were not optimized. Artificial tap-water samples, leached by a standardized method, demonstrated drinking water application. Implications for this method are convenient in-situ lead ion measurements.


2020 ◽  
pp. 12-17
Author(s):  
Muhammad M Abubakar ◽  
Ibrahim Khalil Abubakar

Some sources of drinking water in Kari Estate in Bauchi Metropolis were analyzed for physicochemical contents and coliform contamination. A total of five samples were collected from different sources as follows: 2 sachets water, 2 wells, and tap water. The physicochemical analysis included the determinations of temperature, pH, electrical conductivity, total dissolved solids, turbidity, colour, suspended solids, odour, taste, total hardness, iron, nitrate, nitirite, manganese, ammonia, fluoride and cyanide. The two wells had total coliforms of 6 and 10 and faecal coliforms of 4 and 5 respectively. Tap water had total and faecal coliforms of 7 and 3 respectively. E. coli were identified in the samples from wells while Bacillus sp. were found in the tap water. Although the physicochemical contents of the samples were normal range, coliform counts of the wells and tap water were above those set by the Nigerian Industrial Standards (NIS) and the World Health Organization (WHO) standards. Presence coliforms above the standards indicates contamination and that the water may be unsafe for drinking. The presence of E. coli suggests that improvement in monitoring and water hygiene practices should be employed to improve the drinking water quality.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mohsen A. Al-shatri ◽  
Abdulmumin A. Nuhu ◽  
Chanbasha Basheer

Haloacetic acids are toxic organic pollutants that can be formed as by-products of disinfection of water by chlorination. In this study, we developed a fast and efficient method for the determination of six species of these compounds in water using dispersive liquid-liquid microextraction followed by GC-MS analysis. To be suitable for GC analysis, the acidic analytes were derivatized usingn-octanol. One-factor-at-a-time optimization was carried out on several factors including temperature, extraction time, amount of catalyst, and dispersive solvent. The optimized conditions were then used to determine calibration parameters. Linearity, as demonstrated by coefficient of determination, ranged between 0.9900 and 0.9966 for the concentration range of 0.05–0.57 µg/L. The proposed method has good repeatability; intraday precision was calculated as %RSD of 2.38–9.34%, while interday precision was 4.69–8.06%. The method was applied to real samples in bottled water and tap water sources. Results indicated that the total concentrations of the analytes in these sources (2.97–5.30 µg/L) were far below the maximum contaminant levels set by both the World Health Organization and the United States Environmental Protection Agency. The proposed method compared favorably with methods reported in the literature.


2019 ◽  
Vol 98 (12) ◽  
pp. 1342-1348
Author(s):  
Yu. A. Rakhmanin ◽  
Anzhelika V. Zagainova ◽  
T. Z. Artemova ◽  
E. K. Gipp ◽  
K. Yu. Kuznetsova ◽  
...  

Introduction. The proposed criteria for the sanitary-bacteriological assessment of the quality of tap water must ensure its epidemic safety. In conditions of intensive bacterial contamination of water bodies, a special role is played by the barrier function of water treatment plants in relation to infectious agents. The overall quality of microorganisms is the pronounced resistance in the aquatic environment, primarily resistance to a number of chlorine-containing disinfectants, which guarantee the preservation of the population in drinking water undergone a water treatment system. Therefore, it is necessary to consider other possible ways of disinfection, such as ultraviolet irradiation. Determination of the effective dose of ultraviolet (UV) disinfection against bacterial, viral and parasitic contamination of drinking water. Material and methods. Tap water was used as model water for research. The effectiveness of UV irradiation with doses of 25, 40, 60 mJ / cm2 against microorganisms was studied. Results. In the course of the work, it was established that the UV disinfection technology with a dose of at least 25 mJ/cm2 can be recommended as a disinfection method when used in conjunction with chlorination. Conclusion. In water treatment technology, a dose of at least 25 mJ/cm2 of UV irradiation can be recommended as a method of disinfecting water in case of microbial contamination by bacteria and viruses at a concentration not exceeding nˑ102 cells/virions in 100 ml, and at a concentration of microbiological contamination nˑ103 cells/virions in 100 ml of water, the use of UV disinfection can be recommended only in conjunction with chlorination and with the provision of indices on the residual chlorine in the distribution network before serving to the consumer. The presented scheme will increase the barrier role of water treatment facilities with respect to viral and bacterial contamination, provide a prolonged decontamination effect, contributing to the suppression of bacterial growth in breeding nets and limit the level of parasitic water contamination during water treatment.


2020 ◽  
pp. 99-102
Author(s):  
A. G. Zavodovsky ◽  

The dry residue of water characterizes its quality with great completeness, since it contains all impurities, including nonvolatile organic substances. Therefore, the mass of dry residue can characterize the depth of drinking water treatment and is an important indicator of its quality. Currently, this parameter is determined by the gravimetric method. The determination of the dry residue mass by this method requires considerable time for the analysis and the use of a large mass of the substance. Quartz microweights, the sensitive element of which is a quartz piezoresonator, do not have these disadvantages. The purpose of this work is to evaluate the possibility of using the piezoquartz microweighing method for rapid analysis of drinking water quality. The use of this highly mass-sensitive method (10–8–10–9 g) can significantly reduce the mass of water used for the experiment, and, accordingly, the analysis time, which is determined by the evaporation time of the substance. An experimental module based on a quartz piezoresonator is created to perform experimental studies. The mass-sensitive coefficient of microweights is determined using calibration measurements. For the given experimental conditions (temperature 20 ° C, pressure 105 Pa), it is equal to Сf = (9,50,5) 10–9 g/Hz. To assess the possibility of practical use of the piezoquartz microweighing method, various samples of drinking water are studied and the results analyzed. Based on the experimental data, the parameter X is calculated, which characterizes the mass of dry residue in a liter of water. In the course of experimental studies, it is found that the tap water used in the experiment is optimally mineralized by the value of the parameter X, and its purification using a household filter slightly reduces the amount of dry residue. When boiling water, some of the substances dissolved in it precipitates, but its mineralization remains satisfactory. During the distillation process, the amount of dry residue is significantly reduced, and the water becomes slightly mineralized. The results obtained in this work are consistent with the known experimental data. Thus, the piezoquartz microweighing method can be used to determine the dry residue of drinking water when evaluating its quality in various technological processes


Sign in / Sign up

Export Citation Format

Share Document