scholarly journals Turning Analysis during Standardized Test Using On-Shoe Wearable Sensors in Parkinson’s Disease

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3103 ◽  
Author(s):  
Nooshin Haji Ghassemi ◽  
Julius Hannink ◽  
Nils Roth ◽  
Heiko Gaßner ◽  
Franz Marxreiter ◽  
...  

Mobile gait analysis systems using wearable sensors have the potential to analyze and monitor pathological gait in a finer scale than ever before. A closer look at gait in Parkinson’s disease (PD) reveals that turning has its own characteristics and requires its own analysis. The goal of this paper is to present a system with on-shoe wearable sensors in order to analyze the abnormalities of turning in a standardized gait test for PD. We investigated turning abnormalities in a large cohort of 108 PD patients and 42 age-matched controls. We quantified turning through several spatio-temporal parameters. Analysis of turn-derived parameters revealed differences of turn-related gait impairment in relation to different disease stages and motor impairment. Our findings confirm and extend the results from previous studies and show the applicability of our system in turning analysis. Our system can provide insight into the turning in PD and be used as a complement for physicians’ gait assessment and to monitor patients in their daily environment.

Diseases ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 18 ◽  
Author(s):  
Lorenzo Brognara ◽  
Pierpaolo Palumbo ◽  
Bernd Grimm ◽  
Luca Palmerini

: Parkinson’s disease (PD) is a progressive neurodegenerative disorder. Gait impairments are common among people with PD. Wearable sensor systems can be used for gait analysis by providing spatio-temporal parameters useful to investigate the progression of gait problems in Parkinson disease. However, various methods and tools with very high variability have been developed. The aim of this study is to review published articles of the last 10 years (from 2008 to 2018) concerning the application of wearable sensors to assess spatio-temporal parameters of gait in patients with PD. We focus on inertial sensors used for gait analysis in the clinical environment (i.e., we do not cover the use of inertial sensors to monitor walking or general activities at home, in unsupervised environments). Materials and Methods: Relevant articles were searched in the Medline database using Pubmed. Results and Discussion: Two hundred ninety-four articles were initially identified while searching the scientific literature regarding this topic. Thirty-six articles were selected and included in this review. Conclusion: Wearable motion sensors are useful, non-invasive, low-cost, and objective tools that are being extensively used to perform gait analysis on PD patients. Being able to diagnose and monitor the progression of PD patients makes wearable sensors very useful to evaluate clinical efficacy before and after therapeutic interventions. However, there is no uniformity in the use of wearable sensors in terms of: number of sensors, positioning, chosen parameters, and other characteristics. Future research should focus on standardizing the measurement setup and selecting which spatio-temporal parameters are the most informative to analyze gait in PD. These parameters should be provided as standard assessments in all studies to increase replicability and comparability of results.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gloria Vergara-Diaz ◽  
Jean-Francois Daneault ◽  
Federico Parisi ◽  
Chen Admati ◽  
Christina Alfonso ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dyskinesia and motor fluctuations are complications of PD medications. An objective measure of on/off time with/without dyskinesia has been sought for some time because it would facilitate the titration of medications. The objective of the dataset herein presented is to assess if wearable sensor data can be used to generate accurate estimates of limb-specific symptom severity. Nineteen subjects with PD experiencing motor fluctuations were asked to wear a total of five wearable sensors on both forearms and shanks, as well as on the lower back. Accelerometer data was collected for four days, including two laboratory visits lasting 3 to 4 hours each while the remainder of the time was spent at home and in the community. During the laboratory visits, subjects performed a battery of motor tasks while clinicians rated limb-specific symptom severity. At home, subjects were instructed to use a smartphone app that guided the periodic performance of a set of motor tasks.


2021 ◽  
Vol 11 (3) ◽  
pp. 361
Author(s):  
Rwei-Ling Yu ◽  
Shao-Ching Tu ◽  
Ruey-Meei Wu ◽  
Pei-An Lu ◽  
Chun-Hsiang Tan

(1) Background: Monoamine neurotransmitters play essential roles in the normal functioning of our nervous system. However, the metabolism of monoamine neurotransmitters is accompanied by the production of neurotoxic metabolites, and inefficient removal of the metabolites has been suggested to cause neurodegeneration. (2) Methods: To examine the effect of reduced activity of catechol-O-methyltransferase (COMT) and aldehyde dehydrogenase 2 (ALDH2) conferred by single nucleotide polymorphisms COMT rs4680(A) and ALDH2 rs671(A) on the symptoms of patients with Parkinson’s disease (PD), a total of 114 PD patients were recruited cross-sectionally and received genotyping for rs4680 and rs671 along with MDS-UPDRS evaluation. (3) Results: We found that patients carrying rs4680(A) had more severe bradykinesia in the upper extremity and rest tremor. Besides, patients carrying rs671(A) had more difficulty maintaining personal hygiene, while patients with genotype rs671(GG) had higher scores in the item “depressed mood.” More importantly, we found the effect of rs4680 to be moderated by rs671 SNP for the symptom of “hand movements.” The detrimental impact of rs4680(A) is more pronounced in the presence of genotype rs671(GG). (4) Conclusions: This study facilitates a deeper understanding of the detrimental effect of reduced activity of COMT and ALDH2 conferred by genetic variation and provides novel insight into the interactions between enzymes metabolizing monoamine neurotransmitters in the pathogenesis of PD.


2021 ◽  
Vol 11 (7) ◽  
pp. 895
Author(s):  
Karolina A. Bearss ◽  
Joseph F. X. DeSouza

Parkinson’s disease (PD) is a neurodegenerative disease that has a fast progression of motor dysfunction within the first 5 years of diagnosis, showing an annual motor rate of decline of the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) between 5.2 and 8.9 points. We aimed to determine both motor and non-motor PD symptom progression while participating in dance classes once per week over a period of three years. Longitudinal data was assessed for a total of 32 people with PD using MDS-UPDRS scores. Daily motor rate of decline was zero (slope = 0.000146) in PD-Dancers, indicating no motor impairment, whereas the PD-Reference group showed the expected motor decline across three years (p < 0.01). Similarly, non-motor aspects of daily living, motor experiences of daily living, and motor complications showed no significant decline. A significant group (PD-Dancers and PD-Reference) by days interaction showed that PD who train once per week have less motor impairment (M = 18.75) than PD-References who do not train (M = 24.61) over time (p < 0.05). Training is effective at slowing both motor and non-motor PD symptoms over three years as shown in decreased scores of the MDS-UPDRS.


2021 ◽  
Author(s):  
Anat Mirelman ◽  
Mor Ben Or Frank ◽  
Michal Melamed ◽  
Lena Granovsky ◽  
Alice Nieuwboer ◽  
...  

2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Massimiliano Pau ◽  
Federica Corona ◽  
Roberta Pili ◽  
Carlo Casula ◽  
Marco Guicciardi ◽  
...  

This study aimed to investigate possible differences in spatio-temporal gait parameters of people with Parkinson’s Disease (pwPD) when they are tested either in laboratory using 3D Gait Analysis or in a clinical setting using wearable accelerometers. The main spatio-temporal gait parameters (speed, cadence, stride length, stance, swing and double support duration) of 31 pwPD were acquired: i) using a wearable accelerometer in a clinical setting while wearing shoes (ISS); ii) same as condition 1, but barefoot (ISB); iii) using an optoelectronic system (OES) undressed and barefoot. While no significant differences were found for cadence, stance, swing and double support duration, the experimental setting affected speed and stride length that decreased (by 17% and 12% respectively, P<0.005) when passing from the clinical (ISS) to the laboratory (OES) setting. These results suggest that gait assessment should be always performed in the same conditions to avoid errors, which may lead to inaccurate patient’s evaluations.


Author(s):  
Armando Coccia ◽  
Bernardo Lanzillo ◽  
Leandro Donisi ◽  
Federica Amitrano ◽  
Giuseppe Cesarelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document