scholarly journals Low-Power and Low-Cost Environmental IoT Electronic Nose Using Initial Action Period Measurements

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3183 ◽  
Author(s):  
Carlos J. García-Orellana ◽  
Miguel Macías-Macías ◽  
Horacio M. González-Velasco ◽  
Antonio García-Manso ◽  
Ramón Gallardo-Caballero

In this work, we present a complete hardware development and current consumption study of a portable electronic nose designed for the Internet-of-Things (IoT). Thanks to the technique of measuring in the initial action period, it can be reliably powered with a moderate-sized battery. The system is built around the well-known SoC (System on Chip) ESP8266EX, using low-cost electronics and standard sensors from Figaro’s TGS26xx series. This SoC, in addition to a powerful microcontroller, provides Wi-Fi connectivity, making it very suitable for IoT applications. The system also includes a precision analog-to-digital converter for the measurements and a charging module for the lithium battery. During its operation, the designed software takes measurements periodically, and keeps the microcontroller in deep-sleep state most of the time, storing several measurements before uploading them to the cloud. In the experiments and tests carried out, we have focused our work on the measurement and optimization of current consumption, with the aim of extending the battery life. The results show that taking measurements every 4 min and uploading data every five measurements, the battery of 750 mAh needs to be charged approximately once a month. Despite the fact that we have used a specific model of gas sensor, this methodology is quite generic and could be extended to other sensors with lower consumption, increasing very significantly the duration of the battery.

2012 ◽  
Vol 214 ◽  
pp. 232-236
Author(s):  
Xiao Qiong Zuo ◽  
Ya Xian Liu

Numerous applications require very precise time measurement. Usually, the measurement accuracy is increased by improve the MCU MIPS. It will take the high cost and current consumption, and the accuracy is limited in the MCU MIPS. Using CTMU channels work in conjunction with Analog to Digital converters, the high precise time measurement with low cost MCU can be achieved, and make the time measurement resolution to 1 nanosecond. CTMU module is available in many Microchip microcontrollers.


Cryptography ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Md Jubayer al Mahmod ◽  
Ujjwal Guin

The edge devices connected to the Internet of Things (IoT) infrastructures are increasingly susceptible to piracy. These pirated edge devices pose a serious threat to security, as an adversary can get access to the private network through these non-authentic devices. It is necessary to authenticate an edge device over an unsecured channel to safeguard the network from being infiltrated through these fake devices. The implementation of security features demands extensive computational power and a large hardware/software overhead, both of which are difficult to satisfy because of inherent resource limitation in the IoT edge devices. This paper presents a low-cost authentication protocol for IoT edge devices that exploits power-up states of built-in SRAM for device fingerprint generations. Unclonable ID generated from the on-chip SRAM could be unreliable, and to circumvent this issue, we propose a novel ID matching scheme that alleviates the need for enhancing the reliability of the IDs generated from on-chip SRAMs. Security and different attack analysis show that the probability of impersonating an edge device by an adversary is insignificant. The protocol is implemented using a commercial microcontroller, which requires a small code overhead. However, no modification of device hardware is necessary.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2470 ◽  
Author(s):  
Pedro Silva ◽  
Ville Kaseva ◽  
Elena Lohan

Connectivity solutions for the Internet of Things (IoT) aim to support the needs imposed by several applications or use cases across multiple sectors, such as logistics, agriculture, asset management, or smart lighting. Each of these applications has its own challenges to solve, such as dealing with large or massive networks, low and ultra-low latency requirements, long battery life requirements (i.e., more than ten years operation on battery), continuously monitoring of the location of certain nodes, security, and authentication. Hence, a part of picking a connectivity solution for a certain application depends on how well its features solve the specific needs of the end application. One key feature that we see as a need for future IoT networks is the ability to provide location-based information for large-scale IoT applications. The goal of this paper is to highlight the importance of positioning features for IoT applications and to provide means of comparing and evaluating different connectivity protocols in terms of their positioning capabilities. Our compact and unified analysis ends with several case studies, both simulation-based and measurement-based, which show that high positioning accuracy on low-cost low-power devices is feasible if one designs the system properly.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000216-000219
Author(s):  
Dongliang Chen ◽  
Jinhui Wang ◽  
Na Gong

With the rapid development of portable devices, it becomes more and more popular for people to watch videos by mobile phones. As people are enjoying to watch videos anytime and anywhere, experience and battery life are two major concerns. This paper presents a viewing context adaptive on-chip video memory design methodology to prolong the battery life of portable devices, while maintaining the viewing experience of users. We developed a model for mobile videos in different luminance contexts and based on it, implemented a low-cost low-power video memory. Our results show that up to 32.6% power savings can be achieved, while maintaining almost the same perception quality, as compared to the conventional SRAM.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 726 ◽  
Author(s):  
Tonino Pisanu ◽  
Salvatore Garau ◽  
Pierluigi Ortu ◽  
Luca Schirru ◽  
Claudia Macciò

The Internet of Things has a high impact on upgrade and transformation of the traditional greenhouse agricultural techniques. It is necessary to control the environmental factors for obtaining the optimum growth conditions for the crop and extend the production season to get the optimum yield. These aspects are fundamental for Agriculture 4.0, that uses technology not simply for the sake of innovation but to improve and address the real needs of consumers. In this paper, a prototype of a low-cost electronic platform for real time greenhouse environment monitoring has been designed, developed and built. The prototype has been developed with the purpose of firmware and software prototyping, in order to make the most of device performances. The electronic board is composed by a Main Board, a Green House Core, a Wi-Fi Module, a RS485 Module, an Analog-to-Digital Converter Module and a USB Module. The system permits to collect data by external sensors, elaborate and send them to external devices as laptop, smartphone and internet gateway, using both wired and wireless connection. These data concern to main greenhouse environmental parameters, such as air temperature, humidity, solar radiation, air velocity and CO2 concentration. A Web application has been implemented to allow users a consultation of greenhouse environmental state in a simple and fast way.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1178 ◽  
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a microfluidic device implemented as a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval was carried on after bacteria heat-lysis by an on-chip micro-heater, whose function was characterized at different working parameters. Carbon resistive temperature sensors were tested, characterized and printed on the biochip sealing film to monitor the heating process. Off-chip and on-chip processed RNA were hybridized with capture probes on the reaction chamber surface and identification was achieved by detection of fluorescence tags. The application of the mentioned techniques and materials proved to allow the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the integration potential of fully thermoplastic devices in biosensor systems.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
J. M. Lazarus ◽  
M. Ncube

Abstract Background Technology currently used for surgical endoscopy was developed and is manufactured in high-income economies. The cost of this equipment makes technology transfer to resource constrained environments difficult. We aimed to design an affordable wireless endoscope to aid visualisation during rigid endoscopy and minimally invasive surgery (MIS). The initial prototype aimed to replicate a 4-mm lens used in rigid cystoscopy. Methods Focus was placed on using open-source resources to develop the wireless endoscope to significantly lower the cost and make the device accessible for resource-constrained settings. An off the shelf miniature single-board computer module was used because of its low cost (US$10) and its ability to handle high-definition (720p) video. Open-source Linux software made monitor mode (“hotspot”) wireless video transmission possible. A 1280 × 720 pixel high-definition tube camera was used to generate the video signal. Video is transmitted to a standard laptop computer for display. Bench testing included latency of wireless digital video transmission. Comparison to industry standard wired cameras was made including weight and cost. The battery life was also assessed. Results In comparison with industry standard cystoscope lens, wired camera, video processing unit and light source, the prototype costs substantially less. (US$ 230 vs 28 000). The prototype is light weight (184 g), has no cables tethering and has acceptable battery life (of over 2 h, using a 1200 mAh battery). The camera transmits video wirelessly in near real time with only imperceptible latency of < 200 ms. Image quality is high definition at 30 frames per second. Colour rendering is good, and white balancing is possible. Limitations include the lack of a zoom. Conclusion The novel wireless endoscope camera described here offers equivalent high-definition video at a markedly reduced cost to contemporary industry wired units and could contribute to making minimally invasive surgery possible in resource-constrained environments.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2254
Author(s):  
Francisco Javier González-Cañete ◽  
Eduardo Casilari

Over the last few years, the use of smartwatches in automatic Fall Detection Systems (FDSs) has aroused great interest in the research of new wearable telemonitoring systems for the elderly. In contrast with other approaches to the problem of fall detection, smartwatch-based FDSs can benefit from the widespread acceptance, ergonomics, low cost, networking interfaces, and sensors that these devices provide. However, the scientific literature has shown that, due to the freedom of movement of the arms, the wrist is usually not the most appropriate position to unambiguously characterize the dynamics of the human body during falls, as many conventional activities of daily living that involve a vigorous motion of the hands may be easily misinterpreted as falls. As also stated by the literature, sensor-fusion and multi-point measurements are required to define a robust and reliable method for a wearable FDS. Thus, to avoid false alarms, it may be necessary to combine the analysis of the signals captured by the smartwatch with those collected by some other low-power sensor placed at a point closer to the body’s center of gravity (e.g., on the waist). Under this architecture of Body Area Network (BAN), these external sensing nodes must be wirelessly connected to the smartwatch to transmit their measurements. Nonetheless, the deployment of this networking solution, in which the smartwatch is in charge of processing the sensed data and generating the alarm in case of detecting a fall, may severely impact on the performance of the wearable. Unlike many other works (which often neglect the operational aspects of real fall detectors), this paper analyzes the actual feasibility of putting into effect a BAN intended for fall detection on present commercial smartwatches. In particular, the study is focused on evaluating the reduction of the battery life may cause in the watch that works as the core of the BAN. To this end, we thoroughly assess the energy drain in a prototype of an FDS consisting of a smartwatch and several external Bluetooth-enabled sensing units. In order to identify those scenarios in which the use of the smartwatch could be viable from a practical point of view, the testbed is studied with diverse commercial devices and under different configurations of those elements that may significantly hamper the battery lifetime.


Sign in / Sign up

Export Citation Format

Share Document