scholarly journals Long-Term Home-Monitoring Sensor Technology in Patients with Parkinson’s Disease—Acceptance and Adherence

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5169 ◽  
Author(s):  
Angela Botros ◽  
Narayan Schütz ◽  
Martin Camenzind ◽  
Prabitha Urwyler ◽  
Daniel Bolliger ◽  
...  

Parkinson’s disease (PD) is characterized by a highly individual disease-profile as well as fluctuating symptoms. Consequently, 24-h home monitoring in a real-world environment would be an ideal solution for precise symptom diagnostics. In recent years, small lightweight sensors which have assisted in objective, reliable analysis of motor symptoms have attracted a lot of attention. While technical advances are important, patient acceptance of such new systems is just as crucial to increase long-term adherence. So far, there has been a lack of long-term evaluations of PD-patient sensor adherence and acceptance. In a pilot study of PD patients (N = 4), adherence (wearing time) and acceptance (questionnaires) of a multi-part sensor set was evaluated over a 4-week timespan. The evaluated sensor set consisted of 3 body-worn sensors and 7 at-home installed ambient sensors. After one month of continuous monitoring, the overall system usability scale (SUS)-questionnaire score was 71.5%, with an average acceptance score of 87% for the body-worn sensors and 100% for the ambient sensors. On average, sensors were worn 15 h and 4 min per day. All patients reported strong preferences of the sensor set over manual self-reporting methods. Our results coincide with measured high adherence and acceptance rate of similar short-term studies and extend them to long-term monitoring.

2020 ◽  
Author(s):  
Ashok Kumar Pandey ◽  
Saurabh Mishra ◽  
Alka Mishra

Background: Parkinson's disease is a disabling neurodegenerative disorder, mainly affecting the elderly population. Symptoms of Parkinsonism include motor function abnormalities, tremors in hands and legs, postural instability, etc. Side-effect free, long-term management of Parkinsonism is still a challenge. According to Ayurveda, the disease that resembles the symptoms associated with Parkinson's disease is Kampavata (kampa means tremors), which is primarily caused by the imbalance of the Vata Dosha. Various Panchakarma procedures have been found useful in the treatment of different Vata Vyadhis (diseases caused by the imbalance of Vata Dosha).Methodology: Panchakarma therapy was administered for 19 days to a male patient suffering from symptoms of Parkinsonism (Kampavata) since about nine months, as well as other associated ailments. According to Ayurveda, Kampavata is primarily associated with Vata imbalance. Hence, Vata pacifying herbal medicines, that also provide strengthening and nourishing effect to the degenerative tissues of the body, as well as nourishment to the brain, were used.Results: The patient experienced significant relief in the tremors in B/L hands, numbness in B/L big toes, weakness in lower extremity, and lower back pain. The patient also experienced notable relief in the complaints of Constipation, Gastric upset, and Flatus. Overall, the patient reported a satisfactory experience after taking the therapy.Conclusion: Panchakarma therapy showed encouraging results in the management of symptoms associated with Parkinsonism, as well as other associated ailments, in short duration of time.


2021 ◽  
Vol 11 (16) ◽  
pp. 7354
Author(s):  
John Noel Victorino ◽  
Yuko Shibata ◽  
Sozo Inoue ◽  
Tomohiro Shibata

Parkinson’s disease (PD) patients experience varying symptoms related to their illness. Therefore, each patient needs a tailored treatment program from their doctors. One approach is the use of anti-PD medicines. However, a “wearing-off” phenomenon occurs when these medicines lose their effect. As a result, patients start to experience the symptoms again until their next medicine intake. In the long term, the duration of “wearing-off” begins to shorten. Thus, patients and doctors have to work together to manage PD symptoms effectively. This study aims to develop a prediction model that can determine the “wearing-off” of anti-PD medicine. We used fitness tracker data and self-reported symptoms from a smartphone application in a real-world environment. Two participants wore the fitness tracker for a month while reporting any symptoms using the Wearing-Off Questionnaire (WoQ-9) on a smartphone application. Then, we processed and combined the datasets for each participant’s models. Our analysis produced prediction models for each participant. The average balanced accuracy with the best hyperparameters was at 70.0–71.7% for participant 1 and 76.1–76.9% for participant 2, suggesting that our approach would be helpful to manage the “wearing-off” of anti-PD medicine, motor fluctuations of PD patients, and customized treatment for PD patients.


1989 ◽  
Vol 28 (03) ◽  
pp. 92-94 ◽  
Author(s):  
C. Neumann ◽  
H. Baas ◽  
R. Hefner ◽  
G. Hör

The symptoms of Parkinson’s disease often begin on one side of the body and continue to do so as the disease progresses. First SPECT results in 4 patients with hemiparkinsonism using 99mTc-HMPAO as perfusion marker are reported. Three patients exhibited reduced tracer uptake in the contralateral basal ganglia One patient who was under therapy for 1 year, showed a different perfusion pattern with reduced uptake in both basal ganglia. These results might indicate reduced perfusion secondary to reduced striatal neuronal activity.


2020 ◽  
Vol 18 (10) ◽  
pp. 758-768 ◽  
Author(s):  
Khadga Raj ◽  
Pooja Chawla ◽  
Shamsher Singh

: Tramadol is a synthetic analog of codeine used to treat pain of moderate to severe intensity and is reported to have neurotoxic potential. At therapeutic dose, tramadol does not cause major side effects in comparison to other opioid analgesics, and is useful for the management of neurological problems like anxiety and depression. Long term utilization of tramadol is associated with various neurological disorders like seizures, serotonin syndrome, Alzheimer’s disease and Parkinson’s disease. Tramadol produces seizures through inhibition of nitric oxide, serotonin reuptake and inhibitory effects on GABA receptors. Extensive tramadol intake alters redox balance through elevating lipid peroxidation and free radical leading to neurotoxicity and produces neurobehavioral deficits. During Alzheimer’s disease progression, low level of intracellular signalling molecules like cGMP, cAMP, PKC and PKA affect both learning and memory. Pharmacologically tramadol produces actions similar to Selective Serotonin Reuptake Inhibitors (SSRIs), increasing the concentration of serotonin, which causes serotonin syndrome. In addition, tramadol also inhibits GABAA receptors in the CNS has been evidenced to interfere with dopamine synthesis and release, responsible for motor symptoms. The reduced level of dopamine may produce bradykinesia and tremors which are chief motor abnormalities in Parkinson’s Disease (PD).


2021 ◽  
Vol 14 ◽  
Author(s):  
Mohammad Najim Uddin ◽  
Mohammad Injamul Hoq ◽  
Israt Jahan ◽  
Shafayet Ahmed Siddiqui ◽  
Chayan Dhar Clinton ◽  
...  

: Thymoquinone (TQ) is one of the leading phytochemicals, which is abundantly found in Nigella sativa L. seeds. TQ exhibited various biological effects such as antioxidant, anti-inflammatory, antimicrobial, and anti-tumoral in several pre-clinical studies. Parkinson's disease (PD) is a long-term neurodegenerative disease with movement difficulties, and the common feature of neurodegeneration in PD patients is caused by dopaminergic neural damage in the substantia nigra pars compacta. The neuroprotective activity of TQ has been studied in various neurological disorders. TQ-mediated neuroprotection against PD yet to be reported in a single frame; therefore, this review is intended to narrate the potentiality of TQ in the therapy of PD. TQ has been shown to protect against neurotoxins via amelioration of neuroinflammation, oxidative stress, apoptosis, thereby protects neurodegeneration in PD models. TQ could be an emerging therapeutic intervention in PD management, but mechanistic studies have been remained to be investigated to clarify its neuroprotective role.


2021 ◽  
pp. 1-11
Author(s):  
Karoline Knudsen ◽  
Tatyana D. Fedorova ◽  
Jacob Horsager ◽  
Katrine B. Andersen ◽  
Casper Skjærbæk ◽  
...  

Background: We have hypothesized that Parkinson’s disease (PD) comprises two subtypes. Brain-first, where pathogenic α-synuclein initially forms unilaterally in one hemisphere leading to asymmetric nigrostriatal degeneration, and body-first with initial enteric pathology, which spreads through overlapping vagal innervation leading to more symmetric brainstem involvement and hence more symmetric nigrostriatal degeneration. Isolated REM sleep behaviour disorder has been identified as a strong marker of the body-first type. Objective: To analyse striatal asymmetry in [18F]FDOPA PET and [123I]FP-CIT DaT SPECT data from iRBD patients, de novo PD patients with RBD (PD +RBD) and de novo PD patients without RBD (PD - RBD). These groups were defined as prodromal body-first, de novo body-first, and de novo brain-first, respectively. Methods: We included [18F]FDOPA PET scans from 21 iRBD patients, 11 de novo PD +RBD, 22 de novo PD - RBD, and 18 controls subjects. Also, [123I]FP-CIT DaT SPECT data from iRBD and de novo PD patients with unknown RBD status from the PPPMI dataset was analysed. Lowest putamen specific binding ratio and putamen asymmetry index (AI) was defined. Results: Nigrostriatal degeneration was significantly more symmetric in patients with RBD versus patients without RBD or with unknown RBD status in both FDOPA (p = 0.001) and DaT SPECT (p = 0.001) datasets. Conclusion: iRBD subjects and de novo PD +RBD patients present with significantly more symmetric nigrostriatal dopaminergic degeneration compared to de novo PD - RBD patients. The results support the hypothesis that body-first PD is characterized by more symmetric distribution most likely due to more symmetric propagation of pathogenic α-synuclein compared to brain-first PD.


2021 ◽  
Author(s):  
Ellen Gelpi ◽  
Christine Haberler ◽  
Alexander Micko ◽  
Andrea Polt ◽  
Andreas Amon ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Petr G. Lokhov ◽  
Dmitry L. Maslov ◽  
Steven Lichtenberg ◽  
Oxana P. Trifonova ◽  
Elena E. Balashova

A laboratory-developed test (LDT) is a type of in vitro diagnostic test that is developed and used within a single laboratory. The holistic metabolomic LDT integrating the currently available data on human metabolic pathways, changes in the concentrations of low-molecular-weight compounds in the human blood during diseases and other conditions, and their prevalent location in the body was developed. That is, the LDT uses all of the accumulated metabolic data relevant for disease diagnosis and high-resolution mass spectrometry with data processing by in-house software. In this study, the LDT was applied to diagnose early-stage Parkinson’s disease (PD), which currently lacks available laboratory tests. The use of the LDT for blood plasma samples confirmed its ability for such diagnostics with 73% accuracy. The diagnosis was based on relevant data, such as the detection of overrepresented metabolite sets associated with PD and other neurodegenerative diseases. Additionally, the ability of the LDT to detect normal composition of low-molecular-weight compounds in blood was demonstrated, thus providing a definition of healthy at the molecular level. This LDT approach as a screening tool can be used for the further widespread testing for other diseases, since ‘omics’ tests, to which the metabolomic LDT belongs, cover a variety of them.


Sign in / Sign up

Export Citation Format

Share Document