scholarly journals Impact of SCHC Compression and Fragmentation in LPWAN: A Case Study with LoRaWAN

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 280 ◽  
Author(s):  
Jesus Sanchez-Gomez ◽  
Jorge Gallego-Madrid ◽  
Ramon Sanchez-Iborra ◽  
Jose Santa ◽  
Antonio Skarmeta

The dawn of the Internet of Things (IoT) paradigm has brought about a series of novel services never imagined until recently. However, certain deployments such as those employing Low-Power Wide-Area Network (LPWAN)-based technologies may present severe network restrictions in terms of throughput and supported packet length. This situation prompts the isolation of LPWAN systems on islands with limited interoperability with the Internet. For that reason, the IETF’s LPWAN working group has proposed a Static Context Header Compression (SCHC) scheme that permits compression and fragmentation of and IPv6/UDP/CoAP packets with the aim of making them suitable for transmission over the restricted links of LPWANs. Given the impact that such a solution can have in many IoT scenarios, this paper addresses its real evaluation in terms not only of latency and delivery ratio improvements, as a consequence of different compression and fragmentation levels, but also of the overhead in end node resources and useful payload sent per fragment. This has been carried out with the implementation of middleware and using a real testbed implementation of a LoRaWAN-to-IPv6 architecture together with a publish/subscribe broker for CoAP. The attained results show the advantages of SCHC, and sustain discussion regarding the impact of different SCHC and LoRaWAN configurations on the performance. It is highlighted that necessary end node resources are low as compared to the benefit of delivering long IPv6 packets over the LPWAN links. In turn, fragmentation can impose a lack of efficiency in terms of data and energy and, hence, a cross-layer solution is needed in order to obtain the best throughput of the network.

2019 ◽  
Vol 11 (3) ◽  
pp. 57 ◽  
Author(s):  
Lorenzo Vangelista ◽  
Marco Centenaro

The low-power wide-area network (LPWAN) paradigm is gradually gaining market acceptance. In particular, three prominent LPWAN technologies are emerging at the moment: LoRaWAN™ and SigFox™, which operate on unlicensed frequency bands, and NB-IoT, operating on licensed frequency bands. This paper deals with LoRaWAN™, and has the aim of describing a particularly interesting feature provided by the latest LoRaWAN™ specification—often neglected in the literature—i.e., the roaming capability between different operators of LoRaWAN™ networks, across the same country or even different countries. Recalling that LoRaWAN™ devices do not have a subscriber identification module (SIM) like cellular network terminals, at a first glance the implementation of roaming in LoRaWAN™ networks could seem intricate. The contribution of this paper consists in explaining the principles behind the implementation of a global LoRaWAN network, with particular focus on how to cope with the lack of the SIM in the architecture and how to realize roaming.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 194
Author(s):  
R Caroline Kalaiselvi ◽  
S Mary Vennila

The Internet of Things (IoT) prompts can administered by gathering data from little sensor gadgets. As of late, stockpiling less detecting gadgets have been utilized to actualize IoT administrations.  They rely upon conveyed programming from a system server to work benefit capacities and IoT administrations are in view of gathered client data. In this way, it is critical to keep up trusted associations aid programming conveyance or information transmission. In the event that a system association is deceitful, stable information transmission can't be accomplished. Dishonest information associations cause numerous issues in IoT administrations. In this manner, this paper proposes a product refresh strategy in trusted association of IoT organizing. The technique utilizes Low Power Wide Area Network (LPWAN) as long-go IoT organizing innovation and utilizations a portable edge cloud to enhance registering effectiveness in an entrance arrange that comprises of IoT gadgets with lacking assets. In the strategy, the versatile edge cloud is coordinated into a door, and forms detecting information and remote programming updates of LPWAN. IoT gadgets can get programming capacities from the versatile edge cloud. The proposed strategy investigates measurable data about associations in a get to arrange and decides the LPWAN put stock in associations. At that point, programming updates can be performed over the confided in association. Utilizing trusted associations prompts an expanded bundle conveyance rate and decreased transmission vitality utilization. The strategy is contrasted with at present accessible frameworks through PC recreation and through computer simulation and this method’s efficiency is validated. 


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jaehyu Kim ◽  
JooSeok Song

With the advent of the Internet of Things (IoT) era, we are experiencing rapid technological progress. Billions of devices are connected to each other, and our homes, cities, hospitals, and schools are getting smarter and smarter. However, to realize the IoT, several challenging issues such as connecting resource-constrained devices to the Internet must be resolved. Recently introduced Low Power Wide Area Network (LPWAN) technologies have been devised to resolve this issue. Among many LPWAN candidates, the Long Range (LoRa) is one of the most promising technologies. The Long Range Wide Area Network (LoRaWAN) is a communication protocol for LoRa that provides basic security mechanisms. However, some security loopholes exist in LoRaWAN’s key update and session key generation. In this paper, we propose a dual key-based activation scheme for LoRaWAN. It resolves the problem of key updates not being fully supported. In addition, our scheme facilitates each layer in generating its own session key directly, which ensures the independence of all layers. Real-world experimental results compared with the original scheme show that the proposed scheme is totally feasible in terms of delay and battery consumption.


Author(s):  
Aizat Faiz Ramli ◽  
Muhammad Ikram Shabry ◽  
Mohd Azlan Abu ◽  
Hafiz Basarudin

LoRaWAN is one of the leading Low power wide area network (LPWAN) LPWAN technologies that compete for the formation of big scale Internet of Things (IoT). It uses LoRa protocol to achieve long range, low bit rate and low power communication. Large scale LoRaWAN based IoT deployments can consist of battery powered sensor nodes. Therefore, the energy consumption and efficiency of these nodes are crucial factors that can influence the lifetime of the network. However, there is no coherent experimental based research which identifies the factors that influence the LoRa energy efficiency at various nodes density. In this paper, results on measuring the packet delivery ratio, packet loss, data rate and energy consumption ratio ECR to gauge the energy efficiency of LoRa devices at various nodes density are presented. It is shown that the ECR of LoRa is inversely proportional to the nodes density and that the ECR of the network is smaller at higher traffic indicating better network energy efficiency. It is also demonstrated that at high node density, spreading factor SF of 7 and 9 can improve the energy efficiency of the network by 5 and 3 times, respectively, compare to SF 11.


2019 ◽  
Vol 20 (2) ◽  
pp. 365-376 ◽  
Author(s):  
Vivek Kumar Prasad ◽  
Madhuri D Bhavsar ◽  
Sudeep Tanwar

The evolution of the Internet of Things (IoT) has augmented the necessity for Cloud, edge and fog platforms. The chief benefit of cloud-based schemes is they allow data to be collected from numerous services and sites, which is reachable from any place of the world. The organizations will be benefited by merging the cloud platform with the on-site fog networks and edge devices and as result, this will increase the utilization of the IoT devices and end users too. The network traffic will reduce as data will be distributed and this will also improve the operational efficiency. The impact of monitoring in edge and fog computing can play an important role to efficiently utilize the resources available at these layers. This paper discusses various techniques involved for monitoring for edge and fog computing and its advantages. The paper ends with a case study to demonstarte the need of monitoring in fog and edge in the healthcare system.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6837
Author(s):  
Adeiza J. Onumanyi ◽  
Adnan M. Abu-Mahfouz ◽  
Gerhard P. Hancke

The Internet of Things (IoT) is an emerging paradigm that enables many beneficial and prospective application areas, such as smart metering, smart homes, smart industries, and smart city architectures, to name but a few. These application areas typically comprise end nodes and gateways that are often interconnected by low power wide area network (LPWAN) technologies, which provide low power consumption rates to elongate the battery lifetimes of end nodes, low IoT device development/purchasing costs, long transmission range, and increased scalability, albeit at low data rates. However, most LPWAN technologies are often confronted with a number of physical (PHY) layer challenges, including increased interference, spectral inefficiency, and/or low data rates for which cognitive radio (CR), being a predominantly PHY layer solution, suffices as a potential solution. Consequently, in this article, we survey the potentials of integrating CR in LPWAN for IoT-based applications. First, we present and discuss a detailed list of different state-of-the-art LPWAN technologies; we summarize the most recent LPWAN standardization bodies, alliances, and consortia while emphasizing their disposition towards the integration of CR in LPWAN. We then highlight the concept of CR in LPWAN via a PHY-layer front-end model and discuss the benefits of CR-LPWAN for IoT applications. A number of research challenges and future directions are also presented. This article aims to provide a unique and holistic overview of CR in LPWAN with the intention of emphasizing its potential benefits.


T-Comm ◽  
2020 ◽  
Vol 14 (9) ◽  
pp. 24-30
Author(s):  
Vitaly G. Dovbnya ◽  
◽  
Sergey N. Frolov ◽  
Konstantin P. Sulima ◽  
Alexey N. Schitov ◽  
...  

In the context of the rapid growth of various areas of the Internet of things, there is currently no unified approach to building networks based on low-power Wide-area Network (LPWAN) wireless networks, taking into account the general requirements for them as automated control systems (ACS). There are the following areas of use of the Internet of things: industry and production; transport and transportation; control of the technical condition of building structures, air quality, background noise and energy consumption; waste management; smart Parking and providing data on traffic jams; smart street lighting and use in everyday life. Networks based on LoRaWAN technology provide low-cost energy-efficient wireless communications for modern ACS in a variety of industries. It is cost-effective for designing hardware and software for telemetry and controlling, such as a system of control and monitoring engineering systems of buildings and facilities (SMES) and automated outdoor lighting control systems. The article presents a structural and functional analysis of approaches to the construction of hardware and software complex elements based on LoRаWAN, taking into account the specifics and logic of the SMES and ASUS. It also provides calculations of network bandwidth and capacity for a single LoRaWAN gateway in a different mode of operation of ACS. A parametric analysis of existing implementations was carried out to design the management server (SU), which is the main element of the LoRaWAN network. The results allowed to obtain seventeen indicators that determine the functionality of a network server (NS). Network server software development. Major structures and the mechanisms of interaction of its elements are determined during the process of designing the original implementation of NS software.


Sign in / Sign up

Export Citation Format

Share Document