scholarly journals Comparative Study on Noise Reduction Effect of Fiber Optic Hydrophone Based on LMS and NLMS Algorithm

Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 301
Author(s):  
Zhihua Yu ◽  
Yunfei Cai ◽  
Daili Mo

Adaptive filtering has the advantages of real-time processing, small computational complexity, and good adaptability and robustness. It has been widely used in communication, navigation, signal processing, optical fiber sensing, and other fields. In this paper, by adding an interferometer with the same parameters as the signal interferometer as the reference channel, the sensing signal of the interferometric fiber-optic hydrophone is denoised by two adaptive filtering schemes based on the least mean square (LMS) algorithm and the normalized least mean square (NLMS) algorithm respectively. The results show that the LMS algorithm is superior to the NLMS algorithm in reducing total harmonic distortion, improving the signal-to-noise ratio and filtering effect.

2017 ◽  
Vol 2 (4) ◽  
pp. 15
Author(s):  
Mamun Ahmed ◽  
Nasimul Hyder Maruf Bhuyan

In this paper, we have presented the design, implementation and comparison result of Least Mean Square (LMS) algorithm and Normalized LMS (NLMS) algorithm using a 4 channel microphone array for noise reduction as well as speech enhancement. Adaptive sub band Generalized Side lobe Canceller (GSC) beam former has been used for experiment and analysis. Tested results were done by using one speech signal and a small number of noise sources. The side lobe canceller was evaluated with the adaptation of LMS and NLMS. The overall development of Signal to Noise Ratio (SNR) has been determined from the input and output powers of signal and noise, with signal only as input and noise, as input to the GSC. The NLMS algorithm considerably improves speech quality with noise suppression levels of up to 13 dB, while the LMS algorithm is giving up to 10 dB. In different ways of SNR measure was under various types of blocking matrix, step sizes and various noise locations. The whole process will be used for hands-free telephony, video conferencing etc. in a noisy environment.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ghalib R. Ibrahim ◽  
A. Albarbar

Vibration signals measured from a gearbox are complex multicomponent signals, generated by tooth meshing, gear shaft rotation, gearbox resonance vibration signatures, and a substantial amount of noise. This paper presents a novel scheme for extracting gearbox fault features using adaptive filtering techniques for enhancing condition features, meshing frequency sidebands. A modified least mean square (LMS) algorithm is examined and validated using only one accelerometer, instead of using two accelerometers in traditional arrangement, as the main signal and a desired signal is artificially generated from the measured shaft speed and gear meshing frequencies. The proposed scheme is applied to a signal simulated from gearbox frequencies with a numerous values of step size. Findings confirm that 10−5 step size invariably produces more accurate results and there has been a substantial improvement in signal clarity (better signal-to-noise ratio), which makes meshing frequency sidebands more discernible. The developed scheme is validated via a number of experiments carried out using two-stage helical gearbox for a healthy pair of gears and a pair suffering from a tooth breakage with severity fault 1 (25% tooth removal) and fault 2 (50% tooth removal) under loads (0%, and 80% of the total load). The experimental results show remarkable improvements and enhance gear condition features. This paper illustrates that the new approach offers a more effective way to detect early faults.


Author(s):  
Seyed Reza Aali ◽  
Mohammad Reza Besmi ◽  
Mohammad Hosein Kazemi

Purpose The purpose of this paper is to study variation regularization with a positive sequence extraction-normalized least mean square (VRP-NLMS) algorithm for frequency estimation in a three-phase electrical distribution system. A simulation test is provided to validate the performance and convergence rate of the proposed estimation algorithm. Design/methodology/approach Least mean square (LMS) algorithms for frequency estimation encounter problems when voltage contains unbalance, sags and harmonic distortion. The convergence rate of the LMS algorithm is sensitive to the adjustment of the step-size parameter used in the update equation. This paper proposes VRP-NLMS algorithm for frequency estimation in a power system. Regularization parameter is variable in the NLMS algorithm to adjust step-size parameter. Delayed signal cancellation (DSC) operator suppresses harmonics and negative sequence component of the voltage vector in a two-phase Î ± β plane. The DSC part is placed in front of the NLMS algorithm as a pre-filter and a positive sequence of the grid voltage is extracted. Findings By adapting of the step-size parameter, speed and accuracy of the LMS algorithm are improved. The DSC operator is augmented to the NLMS algorithm for more improvement of the performance of this adaptive filter. Simulation results validate that the proposed VRP-NLMS algorithm has a less misalignment of performance with more convergence rate. Originality/value This paper is a theoretical support to simulated system performance.


2021 ◽  
Vol 11 (12) ◽  
pp. 5723
Author(s):  
Chundong Xu ◽  
Qinglin Li ◽  
Dongwen Ying

In this paper, we develop a modified adaptive combination strategy for the distributed estimation problem over diffusion networks. We still consider the online adaptive combiners estimation problem from the perspective of minimum variance unbiased estimation. In contrast with the classic adaptive combination strategy which exploits orthogonal projection technology, we formulate a non-constrained mean-square deviation (MSD) cost function by introducing Lagrange multipliers. Based on the Karush–Kuhn–Tucker (KKT) conditions, we derive the fixed-point iteration scheme of adaptive combiners. Illustrative simulations validate the improved transient and steady-state performance of the diffusion least-mean-square LMS algorithm incorporated with the proposed adaptive combination strategy.


Author(s):  
Сергей Клавдиевич Абрамов ◽  
Виктория Валерьевна Абрамова ◽  
Сергей Станиславович Кривенко ◽  
Владимир Васильевич Лукин

The article deals with the analysis of the efficiency and expedience of applying filtering based on the discrete cosine transform (DCT) for one-dimensional signals distorted by white Gaussian noise with a known or a priori estimated variance. It is shown that efficiency varies in wide limits depending upon the input ratio of signal-to-noise and degree of processed signal complexity. It is offered a method for predicting filtering efficiency according to the traditional quantitative criteria as the ratio of mean square error to the variance of additive noise and improvement of the signal-to-noise ratio. Forecasting is performed based on dependences obtained by regression analysis. These dependencies can be described by simple functions of several types parameters of which are determined as the result of least mean square fitting. It is shown that for sufficiently accurate prediction, only one statistical parameter calculated in the DCT domain can be preliminarily evaluated (before filtering), and this parameter can be calculated in a relatively small number of non-overlapping or partially overlapping blocks of standard size (for example, 32 samples). It is analyzed the variations of efficiency criteria variations for a set of realizations; it is studied factors that influence prediction accuracy. It is demonstrated that it is possible to carry out the forecasting of filtering efficiency for several possible values of the DCT-filter parameter used for threshold setting and, then, to recommend the best value for practical use. An example of using such an adaptation procedure for the filter parameter setting for processing the ECG signal that has not been used in the determination of regression dependences is given. As a result of adaptation, the efficiency of filtering can be essentially increased – benefit can reach 0.5-1 dB. An advantage of the proposed procedures of adaptation and prediction is their universality – they can be applied for different types of signals and different ratios of signal-to-noise.


Author(s):  
M. Yasin ◽  
Pervez Akhtar

Purpose – The purpose of this paper is to analyze the convergence performance of Bessel beamformer, based on the design steps of least mean square (LMS) algorithm, can be named as Bessel LMS (BLMS) algorithm. Its performance is compared in adaptive environment with LMS in terms of two important performance parameters, namely; convergence and mean square error. The proposed BLMS algorithm is implemented on digital signal processor along with antenna array to make it smart in wireless sensor networks. Design/methodology/approach – Convergence analysis is theoretically developed and verified through MatLab Software. Findings – Theoretical model is verified through simulation and its results are shown in the provided table. Originality/value – The theoretical model can obtain validation from well-known result of Wiener filter theory through principle of orthogonality.


Author(s):  
Swati S. Godbole ◽  
Sanjay B. Pokle

This paper describes the performance of Adaptive Noise Cancellation system. Basic concept of adaptive noise canceller is to process signals from two input sources and to reduce the level of undesired noise with adaptive filtering techniques. Adaptive filtering techniques play vital role in wide range of applications. An implementation of adaptive noise cancellation system is used to remove undesired noise from a received signal for various audio related applications that has been developed and implemented by MATLAB. The dual channel adaptive noise cancellation system uses an adaptive filter with least mean square algorithm to cancel noise component from primary signal picked up by primary sensor. Various parameters such as convergence behavior, tracking ability of the algorithm, signal to noise ratio, mean square error etc. of ANC system are studied, analyzed for various applications of adaptive noise cancellation and the same are discussed in this paper.


2018 ◽  
Vol 7 (2.17) ◽  
pp. 79
Author(s):  
Jyoshna Girika ◽  
Md Zia Ur Rahman

Removal of noise components of speech signals in mobile applications  is an important step to facilitate high resolution signals to the user. Throughout the communication method the speech signals are tainted by numerous non stationary noises. The Least Mean Square (LMS) technique is a fundamental adaptive technique usedbroadly in numerouspurposes as anoutcome of its plainness as well as toughness. In LMS technique, an importantfactor is the step size. It bewell-known that if the union rate of the LMS technique will be rapidif the step size is speedy, but the steady-state mean square error (MSE) will raise. On the rival, for the diminutive step size, the steady state MSE will be minute, but the union rate will be conscious. Thus, the step size offers anexchange among the convergence rate and the steady-state MSE of the LMS technique. Build the step size variable before fixed to recover the act of the LMS technique, explicitly, prefer large step size values at the time of the earlyunion of the LMS technique, and usetiny step size values when the structure is near up to its steady state, which results in Normalized LMS (NLMS) algorithms. In this practice the step size is not stable and changes along with the fault signal at that time. The Less mathematical difficulty of the adaptive filter is extremely attractive in speech enhancement purposes. This drop usually accessible by extract either the input data or evaluation fault.  The algorithms depend on an extract of fault or data are Sign Regressor (SR) Algorithms. We merge these sign version to various adaptive noise cancellers. SR Weight NLMS (SRWNLMS), SR Error NLMS (SRENLMS), SR Unbiased LMS (SRUBLMS) algorithms are individual introduced as a quality factor. These Adaptive noise cancellers are compared with esteem to Signal to Noise Ratio Improvement (SNRI). 


1987 ◽  
Vol 30 (4) ◽  
pp. 529-538 ◽  
Author(s):  
Paul Milenkovic

A signal processing technique is described for measuring the jitter, shimmer, and signal-to-noise ratio of sustained vowels. The measures are derived from the least mean square fit of a waveform model to the digitized speech waveform. The speech waveform is digitized at an 8.3 kHz sampling rate, and an interpolation technique is used to improve the temporal resolution of the model fit. The ability of these procedures to measure low levels of perturbation is evaluated both on synthetic speech waveforms and on the speech recorded from subjects with normal voice characteristics.


Sign in / Sign up

Export Citation Format

Share Document