scholarly journals Temperature-Modulated Micromechanical Thermal Analysis with Microstring Resonators Detects Multiple Coherent Features of Small Molecule Glass Transition

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1019
Author(s):  
Maximilian Karl ◽  
Lasse H.E. Thamdrup ◽  
Jukka Rantanen ◽  
Anja Boisen ◽  
Thomas Rades

Micromechanical Thermal Analysis utilizes microstring resonators to analyze a minimum amount of sample to obtain both the thermal and mechanical responses of the sample during a heating ramp. We introduce a modulated setup by superimposing a sinusoidal heating on the linear heating and implementing a post-measurement data deconvolution process. This setup is utilized to take a closer look at the glass transition as an important fundamental feature of amorphous matter with relations to the processing and physical stability of small molecule drugs. With an additionally developed image and qualitative mode shape analysis, we are able to separate distinct features of the glass transition process and explain a previously observed two-fold change in resonance frequency. The results from this setup indicate the detection of initial relaxation to viscous flow onset as well as differences in mode responsivity and possible changes in the primary resonance mode of the string resonators. The modulated setup is helpful to distinguish these processes during the glass transition with varying responses in the frequency and quality factor domain and offers a more robust way to detect the glass transition compared to previously developed methods. Furthermore, practical and theoretical considerations are discussed when performing measurements on string resonators (and comparable emerging analytical techniques) for physicochemical characterization.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Nurul Fatahah Asyqin Zainal ◽  
Jean Marc Saiter ◽  
Suhaila Idayu Abdul Halim ◽  
Romain Lucas ◽  
Chin Han Chan

AbstractWe present an overview for the basic fundamental of thermal analysis, which is applicable for educational purposes, especially for lecturers at the universities, who may refer to the articles as the references to “teach” or to “lecture” to final year project students or young researchers who are working on their postgraduate projects. Description of basic instrumentation [i.e. differential scanning calorimetry (DSC) and thermogravimetry (TGA)] covers from what we should know about the instrument, calibration, baseline and samples’ signal. We also provide the step-by-step guides for the estimation of the glass transition temperature after DSC as well as examples and exercises are included, which are applicable for teaching activities. Glass transition temperature is an important property for commercial application of a polymeric material, e.g. packaging, automotive, etc. TGA is also highlighted where the analysis gives important thermal degradation information of a material to avoid sample decomposition during the DSC measurement. The step-by-step guides of the estimation of the activation energy after TGA based on Hoffman’s Arrhenius-like relationship are also provided.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
René Fulchiron ◽  
Imane Belyamani ◽  
Joshua U. Otaigbe ◽  
Véronique Bounor-Legaré

2012 ◽  
Vol 48 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Noely Camila Tavares Cavalcanti ◽  
Giovana Damasceno Sousa ◽  
Maria Alice Maciel Tabosa ◽  
José Lamartine Soares Sobrinho ◽  
Leila Bastos Leal ◽  
...  

The aim of this study was to characterize three batches of albendazole by pharmacopeial and complementary analytical techniques in order to establish more detailed specifications for the development of pharmaceutical forms. The ABZ01, ABZ02, and ABZ03 batches had melting points of 208 ºC, 208 ºC, and 209 ºC, respectively. X-ray diffraction revealed that all three batches showed crystalline behavior and the absence of polymorphism. Scanning electron microscopy showed that all the samples were crystals of different sizes with a strong tendency to aggregate. The samples were insoluble in water (5.07, 4.27, and 4.52 mg mL-1, respectively) and very slightly soluble in 0.1 M HCl (55.10, 56.90, and 61.70 mg mL-1, respectively) and additionally showed purities within the range specified by the Brazilian Pharmacopoeia 5th edition (F. Bras. V; 98% to 102%). The pharmacopeial assay method was not reproducible and some changes were necessary. The method was validated and showed to be selective, specific, linear, robust, precise, and accurate. From this characterization, we concluded that pharmacopeial techniques alone are not able to detect subtle differences in active pharmaceutical ingredients; therefore, the use of other complementary techniques is required to ensure strict quality control in the pharmaceutical industry.


1990 ◽  
Vol 6 (1) ◽  
pp. 17-19 ◽  
Author(s):  
R. Huggett ◽  
S.C. Brooks ◽  
A.M. Campbell ◽  
R. Satguranathan ◽  
G.A. Bell

1977 ◽  
Vol 47 (1) ◽  
pp. 62-66 ◽  
Author(s):  
J. R. Brown ◽  
B. C. Ennis

DTA, TG, and TMA curves of commercial Kevlar® 49 and Nomex® fibers have been used to assess their behavior at high temperatures. The fibers lost absorbed water around 100°C, and a glass transition was reflected in the DTA and TMA curves in the region of 300°C. Difficulties in the interpretation of DTA and TMA curves in the glass-transition region and in the assignments of Tv‘s for these high-performance fibers are discussed. Whereas Kevlar 49 showed both a crystalline melting point (560°C) and a sharp endothermal thermal decomposition (590°C), Nomex showed only the latter (440°C) and no evidence of melting from the DTA curves. The endothermal decomposition peaks apparently correspond to “polymer melt temperatures” reported for related materials, and correlate well with the TG and TMA features. During thermal analysis of Kevlar 49, oxidation occurs more readily than thermal decomposition, but the latter predominates for Nomex. Differences between dyed and undyed Nomex were due to differences in yarn constitution.


2019 ◽  
Vol 16 (6) ◽  
pp. 2742-2754 ◽  
Author(s):  
Deliang Zhou ◽  
Eric A. Schmitt ◽  
Devalina Law ◽  
Paul J. Brackemeyer ◽  
Geoff G. Z. Zhang

Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 425 ◽  
Author(s):  
Edueng ◽  
Bergström ◽  
Gråsjö ◽  
Mahlin

This study shows the importance of the chosen method for assessing the glass-forming ability (GFA) and glass stability (GS) of a drug compound. Traditionally, GFA and GS are established using in situ melt-quenching in a differential scanning calorimeter. In this study, we included 26 structurally diverse glass-forming drugs (i) to compare the GFA class when the model drugs were produced by spray-drying with that when melt-quenching was used, (ii) to investigate the long-term physical stability of the resulting amorphous solids, and (iii) to investigate the relationship between physicochemical properties and the GFA of spray-dried solids and their long-term physical stability. The spray-dried solids were exposed to dry (<5% RH) and humid (75% RH) conditions for six months at 25 °C. The crystallization of the spray-dried solids under these conditions was monitored using a combination of solid-state characterization techniques including differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. The GFA/GS class assignment for 85% of the model compounds was method-dependent, with significant differences between spray-drying and melt-quenching methods. The long-term physical stability under dry condition of the compounds was predictable from GFA/GS classification and glass transition and crystallization temperatures. However, the stability upon storage at 75% RH could not be predicted from the same data. There was no strong correlation between the physicochemical properties explored and the GFA class or long-term physical stability. However, there was a slight tendency for compounds with a relatively larger molecular weight, higher glass transition temperature, higher crystallization temperature, higher melting point and higher reduced glass transition temperature to have better GFA and better physical stability. In contrast, a high heat of fusion and entropy of fusion seemed to have a negative impact on the GFA and physical stability of our dataset.


Sign in / Sign up

Export Citation Format

Share Document