scholarly journals Phase Imbalance Optimization in Interference Linear Displacement Sensor with Surface Gratings

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1453
Author(s):  
Sergey Odinokov ◽  
Maria Shishova ◽  
Michael Kovalev ◽  
Alexander Zherdev ◽  
Dmitrii Lushnikov

In interferential linear displacement sensors, accurate information about the position of the reading head is calculated out of a pair of quadrature (sine and cosine) signals. In double grating interference schemes, diffraction gratings combine the function of beam splitters and phase retardation devices. Specifically, the reference diffraction grating is located in the reading head and regulates the phase shifts in diffraction orders. Measurement diffraction grating moves along with the object and provides correspondence to the displacement coordinate. To stabilize the phase imbalance in the output quadrature signals of the sensor, we propose to calculate and optimize the parameters of these gratings, based not only on the energetic analysis, but along with phase relationships in diffraction orders. The optimization method is based on rigorous coupled-wave analysis simulation of the phase shifts of light in diffraction orders in the optical system. The phase properties of the reference diffraction grating in the interferential sensor are studied. It is confirmed that the possibility of quadrature modulation depends on parameters of static reference scale. The implemented optimization criteria are formulated in accordance with the signal generation process in the optical branch. Phase imbalance and amplification coefficients are derived from Heydemann elliptic correction and expressed through the diffraction efficiencies and phase retardations of the reference scale. The phase imbalance of the obtained quadrature signals is estimated in ellipticity correction terms depending on the uncertainties of influencing parameters.

2011 ◽  
Vol 317-319 ◽  
pp. 988-991
Author(s):  
Fu Bao Li ◽  
Qin Li ◽  
Zhong Ke Li

Linear displacement sensor is a component, which can convert the displacement into electrical signals, and is used to measure the relative motion between components. Because the relationship between output of sensor and stroke power is nonlinear and it may be affected by external factors, the circuit should be compensated and the sensor should be calibrated. In this research, the LED formed light knife in the mechanical slit, lighting on the sensitive CCD array, and the relationship between displacement and CCD photosensitive arrays can be founded. CCD is the discrete components, which has avoided the nonlinear problem. At the same time, because the CCD output is digital, it reduced the measurement time, so that linearity, accuracy, stability, greatly are improved greatly.


2019 ◽  
Vol 127 (3) ◽  
pp. 527-534 ◽  
Author(s):  
S. B. Odinokov ◽  
M. V. Shishova ◽  
A. Yu. Zherdev ◽  
M. S. Kovalev ◽  
M. L. Galkin ◽  
...  

Author(s):  
Vultchan Gueorgiev ◽  
Zaharinka Gergova ◽  
Ivan Yatchev

PurposeDifferential sensor for linear displacement has been optimized in terms of linearity and sensitivity. The optimization of the sensor is carried out with respect to its characteristic displacement‐output voltage.Design/methodology/approachResponse surface methodology and design of experiments have been successfully applied for sensor optimization. First, a full factorial experiment – computation of the quasi‐static electromagnetic field of the sensor using the finite element method – has been performed. Secondary model has been created on the basis of finite element results. Then this model has been optimized with respect to two criteria – linearity and sensitivity.FindingsThe mutual influence of both criteria has been studied. In this way an optimal trade‐off between linearity and sensitivity of the sensor was achieved.Research limitations/implicationsRelatively small numbers of optimization criteria have been varied. The results can be further improved by adding additional factors to the study.Originality/valueThe results obtained improve characteristics of this type of sensor and make it low cost alternative to the high‐end linear displacement sensors in low to moderate accuracy applications.


1989 ◽  
Vol 28 (17) ◽  
pp. 3550 ◽  
Author(s):  
W. B. Spillman ◽  
D. R. Patriquin ◽  
D. H. Crowne

2011 ◽  
Vol 50 (10) ◽  
pp. 1413 ◽  
Author(s):  
Shuangshuang Zhao ◽  
Changlun Hou ◽  
Jian Bai ◽  
Guoguang Yang ◽  
Feng Tian

2021 ◽  
Vol 63 ◽  
pp. 102481
Author(s):  
Abdul Ghaffar ◽  
Mujahid Mehdi ◽  
YanYun Hu ◽  
Arnaldo G. Leal-Junior ◽  
Abdul Basit ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2842 ◽  
Author(s):  
Wei Liu ◽  
Bing Liang ◽  
Zhenyuan Jia ◽  
Di Feng ◽  
Xintong Jiang ◽  
...  

High precision position control is essential in the process of parts manufacturing and assembling, where eddy current displacement sensors (ECDSs) are widely used owing to the advantages of non-contact sensing, compact volume, and resistance to harsh conditions. To solve the nonlinear characteristics of the sensors, a high-accuracy calibration method based on linearity adjustment is proposed for ECDSs in this paper, which markedly improves the calibration accuracy and then the measurement accuracy. After matching the displacement value and the output voltage of the sensors, firstly, the sensitivity is adjusted according to the specified output range. Then, the weighted support vector adjustment models with the optimal weight of the zero-scale, mid-scale and full-scale are established respectively to cyclically adjust the linearity of the output characteristic curve. Finally, the final linearity adjustment model is obtained, and both the calibration accuracy and precision are verified by the established calibration system. Experimental results show that the linearity of the output characteristic curve of ECDS adjusted by the calibration method reaches over 99.9%, increasing by 1.9–5.0% more than the one of the original. In addition, the measurement accuracy improves from 11–25 μ m to 1–10 μ m in the range of 6mm, which provides a reliable guarantee for high accuracy displacement measurement.


2016 ◽  
pp. 224-236 ◽  
Author(s):  
Yuriy Kondratenko ◽  
Oleksandr Gerasin ◽  
Andriy Topalov

This paper deals with a simulation model of slip displacement sensors for the object slip signals’ registration in the adaptive robot’s gripper. The study presents the analysis of different methods for slip displacement signals detection, as well as authors’ solutions. Special attention is paid to the investigations of the developed sensor with the resistive registration element in rod type structure of sensitive elements, which is able to operate in harsh and corrosive environments. A sensing system for the object slip signals’ registration in the adaptive robot’s gripper with a clamping force correction is developed for proposed slip displacement sensor with multi-component resistive registration elements. The hardware implementation of the sensing system for slip signals’ registration and obtained results are considered in details. The simulation model of the proposed slip displacement sensor based on polytypic conductive rubber is modeled by Proteus software. The intelligent approaches with the use of a field programmable gate array (FPGA) and VHDL-model to the sensing system designing allow to define the slippage direction in slip displacement sensor based on resistive registration elements. Thus, this expands the functionality of the developed sensor.


2012 ◽  
Vol 546-547 ◽  
pp. 368-373
Author(s):  
Jin Wu ◽  
Jin Wu Zhuang ◽  
Yong Hua Zhuang ◽  
Jun Lu

Successful applications of the ERM depend on accurate simulation models. Firstly, we built up a model on the 5000 volts ERM with ansoft. Then we measured motion trajectories of the ERM prototype respectively by means of a piezoelectric acceleration transducer, a magnetic grating displacement transducer and a linear displacement sensor. Based on the comparative analysis of the results from simulation and measurement, we concluded that the simulation model was reliable on one hand, and on the other hand by means of a linear displacement sensor along with a magnetic grating counterpart, we could obtain accurate motion trajectories with a relative error less than 5%.


2021 ◽  
Author(s):  
Zeina ELRAWASHDEH ◽  
Philippe REVEL ◽  
Christine PRELLE ◽  
Frédéric LAMARQUE

Abstract This research study presents the design and the high precision manufacture procedure of a fiber-optic displacement sensor. It is composed of two fiber-optic probes associated with a structure of a cones’ grating. The sensor is characterized by its ability to measure the linear displacement for an axis performing a helicoidal motion. This motion has been demonstrated on a high precision lathe; where the spindle provided the rotational motion, associated to a translational motion on the linear stage. This allowed to obtain the two simultaneous motions. The displacement of the translational stage is measured by the sensor in real time.Firstly, a highly precise geometric model of the reflector part for the sensor was developed. This model provided a specific geometry for the cones-assembled grating, which has been precisely manufactured. The geometric parameters and the surface characteristics of each step in the fabricated grating were both identified in situ on the lathe. The agreement between simulation and experimental results is excellent. The performances of the fiber-optic displacement sensor were identified in-situ on the lathe. The analysis of the voltage output signals from the two fiber-optic probes is used to measure the grating displacement. The unbalanced rotation due to non-centered axes was also characterized. The sensor provided a micrometric resolution, on a measurement range of more than one centimeter.


Sign in / Sign up

Export Citation Format

Share Document