scholarly journals Rectification of Bowl-Shape Deformation of Tidal Flat DEM derived from UAV Imaging

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1602 ◽  
Author(s):  
Hyoseong Lee ◽  
Dongyeob Han

It is necessary to periodically obtain topographic maps of the geographical and environmental characteristics of tidal flats to systemically manage and monitor them. Accurate digital elevation models (DEMs) of the tidal flats are produced while using ground control points (GCPs); however, it is both complicated and difficult to conduct GPS surveys and readings of image coordinates that correspond to these because tidal flat areas are not easy to access. The position and distribution of GCPs affect DEMs, because the entire working area cannot be covered during a survey. In this study, a least-squares height-difference (LHD) DEM matching method with a polynomial model is proposed to increase the number of DEM grids while using a presecured precise DEM to rectify the distortion and bowl effect produced by unmanned aerial vehicle (UAV) images. The most appropriate result was obtained when the translation parameters were quadratic curve polynomials with an increasing number of grids and the rotation parameters were constant. The experimental results indicated that the proposed method reduced the distortion and eliminated the error caused by the bowl effect while only using a reference DEM.

Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3205 ◽  
Author(s):  
Jairo R. Escobar Villanueva ◽  
Luis Iglesias Martínez ◽  
Jhonny I. Pérez Montiel

Geospatial products, such as digital elevation models (DEMs), are important topographic tools for tackling local flood studies. This study investigates the contribution of LiDAR elevation data in DEM generation based on fixed-wing unmanned aerial vehicle (UAV) imaging for flood applications. More specifically, it assesses the accuracy of UAV-derived DEMs using the proposed LiDAR-derived control point (LCP) method in a Structure-from-Motion photogrammetry processing. Also, the flood estimates (volume and area) of the UAV terrain products are compared with a LiDAR-based reference. The applied LCP-georeferencing method achieves an accuracy comparable with other studies. In addition, it has the advantage of using semi-automatic terrain data classification and is readily applicable in flood studies. Lastly, it proves the complementarity between LiDAR and UAV photogrammetry at the local level.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Nguyen QUOC LONG ◽  
Ropesh GOYAL ◽  
Bui KHAC LUYEN ◽  
Le VAN CANH ◽  
Cao XUAN CUONG ◽  
...  

Lightweight Unmanned Aerial Vehicle (UAV) for 3D topographic mapping in mining industry has been raised significantly in recent years. Especially, in complex terrains such as in open-pit mines in which the elevation is rapidly undulating, UAV-based mapping has proven its economical efficiency and higher safety compared to the conventional methods. However, one of the most important factors in UAV mapping of complex terrain is the flight altitude, which needs to be considered seriously because of the safety and accuracy of generated DEMs. This paper aims to evaluate the influence of the flight height on the accuracy of DEMs generated in open-pit mines. To this end, the study area is selected in a quarry with a complex terrain, which is located in northern Vietnam. The investigation was conducted with five flight heights of 50 m, 100 m, 150 m, 200 m, and 250 m. To assess the accuracy of resulting DEMs, ten ground control points (GCPs), and 385 checkpoints measured by both GNSS/RTK and total station methods were used. The accuracy of DEM was assessed by root-mean-square error (RMSE) in X, Y, Z, XY, and XYZ components. The results show that DEM models generated at the flight heights of less than 150 m have high accuracy. RMSEs of the 10 GCPs increase from 1.8 cm to 6.2 cm for the vertical (Z), and from 2.6 cm to 6.3 cm for the horizontal (XY), whereas RMSE of 385 checkpoints increase gradually from 0.05 m to 0.15 m for the vertical (Z) when the flight height increases from 50 m to 250 m.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Margaret Kalacska ◽  
Oliver Lucanus ◽  
J. Pablo Arroyo-Mora ◽  
Étienne Laliberté ◽  
Kathryn Elmer ◽  
...  

The rapid increase of low-cost consumer-grade to enterprise-level unmanned aerial systems (UASs) has resulted in the exponential use of these systems in many applications. Structure from motion with multiview stereo (SfM-MVS) photogrammetry is now the baseline for the development of orthoimages and 3D surfaces (e.g., digital elevation models). The horizontal and vertical positional accuracies (x, y and z) of these products in general, rely heavily on the use of ground control points (GCPs). However, for many applications, the use of GCPs is not possible. Here we tested 14 UASs to assess the positional and within-model accuracy of SfM-MVS reconstructions of low-relief landscapes without GCPs ranging from consumer to enterprise-grade vertical takeoff and landing (VTOL) platforms. We found that high positional accuracy is not necessarily related to the platform cost or grade, rather the most important aspect is the use of post-processing kinetic (PPK) or real-time kinetic (RTK) solutions for geotagging the photographs. SfM-MVS products generated from UAS with onboard geotagging, regardless of grade, results in greater positional accuracies and lower within-model errors. We conclude that where repeatability and adherence to a high level of accuracy are needed, only RTK and PPK systems should be used without GCPs.


2021 ◽  
Vol 2 ◽  
Author(s):  
Sasha. Z. Leidman ◽  
Åsa K. Rennermalm ◽  
Richard G. Lathrop ◽  
Matthew. G. Cooper

The presence of shadows in remotely sensed images can reduce the accuracy of land surface classifications. Commonly used methods for removing shadows often use multi-spectral image analysis techniques that perform poorly for dark objects, complex geometric models, or shaded relief methods that do not account for shadows cast on adjacent terrain. Here we present a new method of removing topographic shadows using readily available GIS software. The method corrects for cast shadows, reduces the amount of over-correction, and can be performed on imagery of any spectral resolution. We demonstrate this method using imagery collected with an uncrewed aerial vehicle (UAV) over a supraglacial stream catchment in southwest Greenland. The structure-from-motion digital elevation model showed highly variable topography resulting in substantial shadowing and variable reflectance values for similar surface types. The distribution of bare ice, sediment, and water within the catchment was determined using a supervised classification scheme applied to the corrected and original UAV images. The correction resulted in an insignificant change in overall classification accuracy, however, visual inspection showed that the corrected classification more closely followed the expected distribution of classes indicating that shadow correction can aid in identification of glaciological features hidden within shadowed regions. Shadow correction also caused a substantial decrease in the areal coverage of dark sediment. Sediment cover was highly dependent on the degree of shadow correction (k coefficient), yet, for a correction coefficient optimized to maximize shadow brightness without over-exposing illuminated surfaces, terrain correction resulted in a 49% decrease in the area covered by sediment and a 29% increase in the area covered by water. Shadow correction therefore reduces the overestimation of the dark surface coverage due to shadowing and is a useful tool for investigating supraglacial processes and land cover change over a wide variety of complex terrain.


2014 ◽  
Vol 8 (5) ◽  
pp. 4849-4883 ◽  
Author(s):  
E. Berthier ◽  
C. Vincent ◽  
E. Magnússon ◽  
Á. Þ. Gunnlaugsson ◽  
P. Pitte ◽  
...  

Abstract. In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of Pléiades sub-meter stereo imagery to derive digital elevation models (DEMs) of glaciers and their elevation changes. Our five validation sites are located in Iceland, the European Alps, the Central Andes, Nepal and Antarctica. For all sites, nearly simultaneous field measurements were collected to evaluate the Pléiades DEMs. For Iceland, the Pléiades DEM is also compared to a Lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs) are used, but reach up to 6 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1-sigma confidence level). We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better. The negative glacier-wide mass balances of the Argentière Glacier and Mer de Glace (−1.21 ± 0.16 and −1.19 ± 0.16 m.w.e. yr−1, respectively) are revealed by differencing SPOT5 and Pléiades DEMs acquired in August 2003 and 2012 demonstrating the continuing rapid glacial wastage in the Mont-Blanc area.


OENO One ◽  
2016 ◽  
Vol 50 (3) ◽  
Author(s):  
Léo Pichon ◽  
Arnaud Ducanchez ◽  
Hélène Fonta ◽  
Bruno Tisseyre

<p style="text-align: justify;"><strong>Aims:</strong> This work aims to study the quality of low cost Digital Surface Models (DSMs) obtained with Unmanned Aerial Vehicle (UAV) images and to test whether these DSMs meet common requirements of the wine industry.</p><p style="text-align: justify;"><strong>Methods and results: </strong>Experiments were carried out on a 4-ha vineyard located 10 km north of Beziers (France). The experimental site presents slope and aspect variations representative of mechanised commercial vineyards in Languedoc Roussillon. DSMs were provided by three UAV companies selected for the diversity of their solutions in terms of image capture altitude, type of UAV and image processing software. DSMs were obtained by photogrammetry and correspond to commercial products usually delivered by UAV companies. DSMs from UAV were compared to a reference Digital Elevation Model (DEM) acquired by a laser tachymeter. Four indicators were used to test the quality of DSMs: the mean error and its dispersion in the XY plane and in elevation Z. Results show a good georeferencing of the DSMs (MeanErrorXY&lt;10 cm) and a similar quality in elevation (MeanErrorZ&lt;10 cm) estimation. Results also show that the error in elevation is highly spatially structured. The spatial patterns observed did not depend on the elevation and could be related to algorithms used to compute the DSMs.</p><p style="text-align: justify;"><strong>Conclusion: </strong>Data acquisition and processing methods have an impact on the quality of the DSMs provided by the UAV companies. DSM qualities are good enough to meet commercial vineyard requirements. The tested DSMs fit the requirements to assess field characteristics (elevation, slope, aspects) which may be important for terroir characterisation purposes.</p><p style="text-align: justify;"><strong>Significance and impact of the study:</strong> This study proves that elevation data derived from UAV present an accuracy equivalent to the reference system used in this study. The rapidity, the low cost and the high spatial resolution of these data offer significant opportunities for the development of new services for the wine industry for field characterisation.</p>


2016 ◽  
Author(s):  
Joaquín M. C. Belart ◽  
Etienne Berthier ◽  
Eyjólfur Magnússon ◽  
Leif S. Anderson ◽  
Finnur Pálsson ◽  
...  

Abstract. Sub-meter resolution satellite stereo images allow the generation of high resolution, accurate digital elevation models (DEMs). Repeated acquisitions of stereo images from Pléiades, in October 2014 and May 2015, and from WorldView2 (WV2), in February 2015, over Drangajökull ice cap (NW-Iceland) are used to estimate the geodetic glacier-wide mass balance on sub-annual time scales. Relative adjustment of the DEMs is performed with and without a pre-existing lidar DEM as source of ground control points (GCPs), and resulting statistics in snow-free and ice-free areas reveal similar vertical accuracy


2014 ◽  
Vol 8 (6) ◽  
pp. 2275-2291 ◽  
Author(s):  
E. Berthier ◽  
C. Vincent ◽  
E. Magnússon ◽  
Á. Þ. Gunnlaugsson ◽  
P. Pitte ◽  
...  

Abstract. In response to climate change, most glaciers are losing mass and hence contribute to sea-level rise. Repeated and accurate mapping of their surface topography is required to estimate their mass balance and to extrapolate/calibrate sparse field glaciological measurements. In this study we evaluate the potential of sub-meter stereo imagery from the recently launched Pléiades satellites to derive digital elevation models (DEMs) of glaciers and their elevation changes. Our five evaluation sites, where nearly simultaneous field measurements were collected, are located in Iceland, the European Alps, the central Andes, Nepal and Antarctica. For Iceland, the Pléiades DEM is also compared to a lidar DEM. The vertical biases of the Pléiades DEMs are less than 1 m if ground control points (GCPs) are used, but reach up to 7 m without GCPs. Even without GCPs, vertical biases can be reduced to a few decimetres by horizontal and vertical co-registration of the DEMs to reference altimetric data on ice-free terrain. Around these biases, the vertical precision of the Pléiades DEMs is ±1 m and even ±0.5 m on the flat glacier tongues (1σ confidence level). Similar precision levels are obtained in the accumulation areas of glaciers and in Antarctica. We also demonstrate the high potential of Pléiades DEMs for measuring seasonal, annual and multi-annual elevation changes with an accuracy of 1 m or better if cloud-free images are available. The negative region-wide mass balances of glaciers in the Mont-Blanc area (−1.04 ± 0.23 m a−1 water equivalent, w.e.) are revealed by differencing Satellite pour l'Observation de la Terre 5 (SPOT 5) and Pléiades DEMs acquired in August 2003 and 2012, confirming the accelerated glacial wastage in the European Alps.


2018 ◽  
Vol 10 (12) ◽  
pp. 1952 ◽  
Author(s):  
Fangning He ◽  
Tian Zhou ◽  
Weifeng Xiong ◽  
Seyyed Hasheminnasab ◽  
Ayman Habib

Accurate 3D reconstruction/modelling from unmanned aerial vehicle (UAV)-based imagery has become the key prerequisite in various applications. Although current commercial software has automated the process of image-based reconstruction, a transparent system, which can be incorporated with different user-defined constraints, is still preferred by the photogrammetric research community. In this regard, this paper presents a transparent framework for the automated aerial triangulation of UAV images. The proposed framework is conducted in three steps. In the first step, two approaches, which take advantage of prior information regarding the flight trajectory, are implemented for reliable relative orientation recovery. Then, initial recovery of image exterior orientation parameters (EOPs) is achieved through either an incremental or global approach. Finally, a global bundle adjustment involving Ground Control Points (GCPs) and check points is carried out to refine all estimated parameters in the defined mapping coordinate system. Four real image datasets, which are acquired by two different UAV platforms, have been utilized to evaluate the feasibility of the proposed framework. In addition, a comparative analysis between the proposed framework and the existing commercial software is performed. The derived experimental results demonstrate the superior performance of the proposed framework in providing an accurate 3D model, especially when dealing with acquired UAV images containing repetitive pattern and significant image distortions.


Sign in / Sign up

Export Citation Format

Share Document