scholarly journals An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2189
Author(s):  
Zhimin Chen ◽  
Jianxin Chen ◽  
Xiangjun Huang

In recent years, sensors in smartphones have been widely used in applications, e.g., human activity recognition (HAR). However, the power of smartphone constrains the applications of HAR due to the computations. To combat it, energy efficiency should be considered in the applications of HAR with smartphones. In this paper, we improve energy efficiency for smartphones by adaptively controlling the sampling rate of the sensors during HAR. We collect the sensor samples, depending on the activity changing, based on the magnitude of acceleration. Besides that, we use linear discriminant analysis (LDA) to select the feature and machine learning methods for activity classification. Our method is verified on the UCI (University of California, Irvine) dataset; and it achieves an overall 56.39% of energy saving and the recognition accuracy of 99.58% during the HAR applications with smartphone.

2021 ◽  
Vol 11 (5) ◽  
pp. 603
Author(s):  
Chunlei Shi ◽  
Xianwei Xin ◽  
Jiacai Zhang

Machine learning methods are widely used in autism spectrum disorder (ASD) diagnosis. Due to the lack of labelled ASD data, multisite data are often pooled together to expand the sample size. However, the heterogeneity that exists among different sites leads to the degeneration of machine learning models. Herein, the three-way decision theory was introduced into unsupervised domain adaptation in the first time, and applied to optimize the pseudolabel of the target domain/site from functional magnetic resonance imaging (fMRI) features related to ASD patients. The experimental results using multisite fMRI data show that our method not only narrows the gap of the sample distribution among domains but is also superior to the state-of-the-art domain adaptation methods in ASD recognition. Specifically, the ASD recognition accuracy of the proposed method is improved on all the six tasks, by 70.80%, 75.41%, 69.91%, 72.13%, 71.01% and 68.85%, respectively, compared with the existing methods.


Author(s):  
Chih-Ta Yen ◽  
Jia-De Lin

This study employed wearable inertial sensors integrated with an activity-recognition algorithm to recognize six types of daily activities performed by humans, namely walking, ascending stairs, descending stairs, sitting, standing, and lying. The sensor system consisted of a microcontroller, a three-axis accelerometer, and a three-axis gyro; the algorithm involved collecting and normalizing the activity signals. To simplify the calculation process and to maximize the recognition accuracy, the data were preprocessed through linear discriminant analysis; this reduced their dimensionality and captured their features, thereby reducing the feature space of the accelerometer and gyro signals; they were then verified through the use of six classification algorithms. The new contribution is that after feature extraction, data classification results indicated that an artificial neural network was the most stable and effective of the six algorithms. In the experiment, 20 participants equipped the wearable sensors on their waists to record the aforementioned six types of daily activities and to verify the effectiveness of the sensors. According to the cross-validation results, the combination of linear discriminant analysis and an artificial neural network was the most stable classification algorithm for data generalization; its activity-recognition accuracy was 87.37% on the training data and 80.96% on the test data.


2020 ◽  
Author(s):  
A Pozzi ◽  
C Raffone ◽  
MG Belcastro ◽  
TL Camilleri-Carter

ABSTRACTObjectivesUsing cranial measurements in two Italian populations, we compare machine learning methods to the more traditional method of linear discriminant analysis in estimating sex. We use crania in sex estimation because it is useful especially when remains are fragmented or displaced, and the cranium may be the only remains found.Materials and MethodsUsing the machine learning methods of decision tree learning, support-vector machines, k-nearest neighbor algorithm, and ensemble methods we estimate the sex of two populations: Samples from Bologna and samples from the island of Sardinia. We used two datasets, one containing 17 cranial measurements, and one measuring the foramen magnum.Results and DiscussionOur results indicate that machine learning models produce similar results to linear discriminant analysis, but in some cases machine learning produces more consistent accuracy between the sexes. Our study shows that sex can be accurately predicted (> 80%) in Italian populations using the cranial measurements we gathered, except for the foramen magnum, which shows a level of accuracy of ∼70% accurate which is on par with previous geometric morphometrics studies using crania in sex estimation. We also find that our trained machine learning models produce population-specific results; we see that Italian crania are sexually dimorphic, but the features that are important to this dimorphism differ between the populations.


2019 ◽  
Author(s):  
Tianzhou Yang ◽  
Li Zhang ◽  
Liwei Yi ◽  
Huawei Feng ◽  
Shimeng Li ◽  
...  

BACKGROUND Early diabetes screening can effectively reduce the burden of disease. However, natural population–based screening projects require a large number of resources. With the emergence and development of machine learning, researchers have started to pursue more flexible and efficient methods to screen or predict type 2 diabetes. OBJECTIVE The aim of this study was to build prediction models based on the ensemble learning method for diabetes screening to further improve the health status of the population in a noninvasive and inexpensive manner. METHODS The dataset for building and evaluating the diabetes prediction model was extracted from the National Health and Nutrition Examination Survey from 2011-2016. After data cleaning and feature selection, the dataset was split into a training set (80%, 2011-2014), test set (20%, 2011-2014) and validation set (2015-2016). Three simple machine learning methods (linear discriminant analysis, support vector machine, and random forest) and easy ensemble methods were used to build diabetes prediction models. The performance of the models was evaluated through 5-fold cross-validation and external validation. The Delong test (2-sided) was used to test the performance differences between the models. RESULTS We selected 8057 observations and 12 attributes from the database. In the 5-fold cross-validation, the three simple methods yielded highly predictive performance models with areas under the curve (AUCs) over 0.800, wherein the ensemble methods significantly outperformed the simple methods. When we evaluated the models in the test set and validation set, the same trends were observed. The ensemble model of linear discriminant analysis yielded the best performance, with an AUC of 0.849, an accuracy of 0.730, a sensitivity of 0.819, and a specificity of 0.709 in the validation set. CONCLUSIONS This study indicates that efficient screening using machine learning methods with noninvasive tests can be applied to a large population and achieve the objective of secondary prevention.


2020 ◽  
pp. 5-18
Author(s):  
N. N. Kiselyova ◽  
◽  
V. A. Dudarev ◽  
V. V. Ryazanov ◽  
O. V. Sen’ko ◽  
...  

New chalcospinels of the most common compositions were predicted: AIBIIICIVX4 (X — S or Se) and AIIBIIICIIIS4 (A, B, and C are various chemical elements). They are promising for the search for new materials for magneto-optical memory elements, sensors and anodes in sodium-ion batteries. The parameter “a” values of their crystal lattice are estimated. When predicting only the values of chemical elements properties were used. The calculations were carried out using machine learning programs that are part of the information-analytical system developed by the authors (various ensembles of algorithms of: the binary decision trees, the linear machine, the search for logical regularities of classes, the support vector machine, Fisher linear discriminant, the k-nearest neighbors, the learning a multilayer perceptron and a neural network), — for predicting chalcospinels not yet obtained, as well as an extensive family of regression methods, presented in the scikit-learn package for the Python language, and multilevel machine learning methods that were proposed by the authors — for estimation of the new chalcospinels lattice parameter value). The prediction accuracy of new chalcospinels according to the results of the cross-validation is not lower than 80%, and the prediction accuracy of the parameter of their crystal lattice (according to the results of calculating the mean absolute error (when cross-validation in the leave-one-out mode)) is ± 0.1 Å. The effectiveness of using multilevel machine learning methods to predict the physical properties of substances was shown.


Author(s):  
Kevin Matsuno ◽  
Vidya Nandikolla

Abstract Brain computer interface (BCI) systems are developed in biomedical fields to increase the quality of life. The development of a six class BCI controller to operate a semi-autonomous robotic arm is presented. The controller uses the following mental tasks: imagined left/right hand squeeze, imagined left/right foot tap, rest, one physical task, and jaw clench. To design a controller, the locations of active electrodes are verified and an appropriate machine learning algorithm is determined. Three subjects, ages ranging between 22-27, participated in five sessions of motor imagery experiments to record their brainwaves. These recordings were analyzed using event related potential plots and topographical maps to determine active electrodes. BCILAB was used to train two, three, five, and six class BCI controllers using linear discriminant analysis (LDA) and relevance vector machine (RVM) machine learning methods. The subjects' data was used to compare the two-method's performance in terms of error rate percentage. While a two class BCI controller showed the same accuracy for both methods, the three and five class BCI controllers showed the RVM approach having a higher accuracy than the LDA approach. For the five-class controller, error rate percentage was 33.3% for LDA and 29.2% for RVM. The six class BCI controller error rate percentage for both LDA and RVM was 34.5%. While the percentage values are the same, RVM was chosen as the desired machine learning algorithm based on the trend seen in the three and five class controller performances.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4991
Author(s):  
Mike Lakoju ◽  
Nemitari Ajienka ◽  
M. Ahmadieh Khanesar ◽  
Pete Burnap ◽  
David T. Branson

To create products that are better fit for purpose, manufacturers require new methods for gaining insights into product experience in the wild at scale. “Chatty Factories” is a concept that explores the transformative potential of placing IoT-enabled data-driven systems at the core of design and manufacturing processes, aligned to the Industry 4.0 paradigm. In this paper, we propose a model that enables new forms of agile engineering product development via “chatty” products. Products relay their “experiences” from the consumer world back to designers and product engineers through the mediation provided by embedded sensors, IoT, and data-driven design tools. Our model aims to identify product “experiences” to support the insights into product use. To this end, we create an experiment to: (i) collect sensor data at 100 Hz sampling rate from a “Chatty device” (device with sensors) for six common everyday activities that drive produce experience: standing, walking, sitting, dropping and picking up of the device, placing the device stationary on a side table, and a vibrating surface; (ii) pre-process and manually label the product use activity data; (iii) compare a total of four Unsupervised Machine Learning models (three classic and the fuzzy C-means algorithm) for product use activity recognition for each unique sensor; and (iv) present and discuss our findings. The empirical results demonstrate the feasibility of applying unsupervised machine learning algorithms for clustering product use activity. The highest obtained F-measure is 0.87, and MCC of 0.84, when the Fuzzy C-means algorithm is applied for clustering, outperforming the other three algorithms applied.


Sign in / Sign up

Export Citation Format

Share Document