scholarly journals Domain Adaptation Using a Three-Way Decision Improves the Identification of Autism Patients from Multisite fMRI Data

2021 ◽  
Vol 11 (5) ◽  
pp. 603
Author(s):  
Chunlei Shi ◽  
Xianwei Xin ◽  
Jiacai Zhang

Machine learning methods are widely used in autism spectrum disorder (ASD) diagnosis. Due to the lack of labelled ASD data, multisite data are often pooled together to expand the sample size. However, the heterogeneity that exists among different sites leads to the degeneration of machine learning models. Herein, the three-way decision theory was introduced into unsupervised domain adaptation in the first time, and applied to optimize the pseudolabel of the target domain/site from functional magnetic resonance imaging (fMRI) features related to ASD patients. The experimental results using multisite fMRI data show that our method not only narrows the gap of the sample distribution among domains but is also superior to the state-of-the-art domain adaptation methods in ASD recognition. Specifically, the ASD recognition accuracy of the proposed method is improved on all the six tasks, by 70.80%, 75.41%, 69.91%, 72.13%, 71.01% and 68.85%, respectively, compared with the existing methods.

Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a “target” domain when the only available training data belongs to a different “source” domain. In this extended abstract, we briefly describe our new DA method called Distributional Correspondence Indexing (DCI) for sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. The experiments we have conducted show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification.


2016 ◽  
Vol 55 ◽  
pp. 131-163 ◽  
Author(s):  
Alejandro Moreo Fernández ◽  
Andrea Esuli ◽  
Fabrizio Sebastiani

Domain Adaptation (DA) techniques aim at enabling machine learning methods learn effective classifiers for a "target'' domain when the only available training data belongs to a different "source'' domain. In this paper we present the Distributional Correspondence Indexing (DCI) method for domain adaptation in sentiment classification. DCI derives term representations in a vector space common to both domains where each dimension reflects its distributional correspondence to a pivot, i.e., to a highly predictive term that behaves similarly across domains. Term correspondence is quantified by means of a distributional correspondence function (DCF). We propose a number of efficient DCFs that are motivated by the distributional hypothesis, i.e., the hypothesis according to which terms with similar meaning tend to have similar distributions in text. Experiments show that DCI obtains better performance than current state-of-the-art techniques for cross-lingual and cross-domain sentiment classification. DCI also brings about a significantly reduced computational cost, and requires a smaller amount of human intervention. As a final contribution, we discuss a more challenging formulation of the domain adaptation problem, in which both the cross-domain and cross-lingual dimensions are tackled simultaneously.


2021 ◽  
Vol 15 ◽  
Author(s):  
Meijie Liu ◽  
Baojuan Li ◽  
Dewen Hu

Machine learning methods have been frequently applied in the field of cognitive neuroscience in the last decade. A great deal of attention has been attracted to introduce machine learning methods to study the autism spectrum disorder (ASD) in order to find out its neurophysiological underpinnings. In this paper, we presented a comprehensive review about the previous studies since 2011, which applied machine learning methods to analyze the functional magnetic resonance imaging (fMRI) data of autistic individuals and the typical controls (TCs). The all-round process was covered, including feature construction from raw fMRI data, feature selection methods, machine learning methods, factors for high classification accuracy, and critical conclusions. Applying different machine learning methods and fMRI data acquired from different sites, classification accuracies were obtained ranging from 48.3% up to 97%, and informative brain regions and networks were located. Through thorough analysis, high classification accuracies were found to usually occur in the studies which involved task-based fMRI data, single dataset for some selection principle, effective feature selection methods, or advanced machine learning methods. Advanced deep learning together with the multi-site Autism Brain Imaging Data Exchange (ABIDE) dataset became research trends especially in the recent 4 years. In the future, advanced feature selection and machine learning methods combined with multi-site dataset or easily operated task-based fMRI data may appear to have the potentiality to serve as a promising diagnostic tool for ASD.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850022
Author(s):  
Karl R. Weiss ◽  
Taghi M. Khoshkoftaar

A transfer learning environment is characterized by not having sufficient labeled training data from the domain of interest (target domain) to build a high-performing machine learner. Transfer learning algorithms use labeled data from an alternate domain (source domain), that is similar to the target domain, to build high-performing learners. The design of a transfer learning algorithm is typically comprised of a domain adaptation step following by a learning step. The domain adaptation step attempts to align the distribution differences between the source domain and the target domain. Then, the aligned data from the domain adaptation step is used in the learning step, which is typically implemented with a traditional machine learning algorithm. Our research studies the impact of the learning step on the performance of various transfer learning algorithms. In our experiment, we use five unique domain adaptation methods coupled with seven different traditional machine learning methods to create 35 different transfer learning algorithms. We perform comparative performance analyses of the 35 transfer learning algorithms, along with the seven stand-alone traditional machine learning methods. This research will aid machine learning practitioners in the algorithm selection process for a transfer learning environment in the absence of reliable validation techniques.


Author(s):  
Ziliang Cai ◽  
Lingyue Wang ◽  
Miaomiao Guo ◽  
Guizhi Xu ◽  
Lei Guo ◽  
...  

Emotion plays a significant role in human daily activities, and it can be effectively recognized from EEG signals. However, individual variability limits the generalization of emotion classifiers across subjects. Domain adaptation (DA) is a reliable method to solve the issue. Due to the nonstationarity of EEG, the inferior-quality source domain data bring negative transfer in DA procedures. To solve this problem, an auto-augmentation joint distribution adaptation (AA-JDA) method and a burden-lightened and source-preferred JDA (BLSP-JDA) approach are proposed in this paper. The methods are based on a novel transfer idea, learning the specific knowledge of the target domain from the samples that are appropriate for transfer, which reduces the difficulty of transfer between two domains. On multiple emotion databases, our model shows state-of-the-art performance.


2018 ◽  
Vol 29 (3) ◽  
pp. 320-325 ◽  
Author(s):  
Mirac Baris Usta ◽  
Koray Karabekiroglu ◽  
Berkan Sahin ◽  
Muazzez Aydin ◽  
Abdullah Bozkurt ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2189
Author(s):  
Zhimin Chen ◽  
Jianxin Chen ◽  
Xiangjun Huang

In recent years, sensors in smartphones have been widely used in applications, e.g., human activity recognition (HAR). However, the power of smartphone constrains the applications of HAR due to the computations. To combat it, energy efficiency should be considered in the applications of HAR with smartphones. In this paper, we improve energy efficiency for smartphones by adaptively controlling the sampling rate of the sensors during HAR. We collect the sensor samples, depending on the activity changing, based on the magnitude of acceleration. Besides that, we use linear discriminant analysis (LDA) to select the feature and machine learning methods for activity classification. Our method is verified on the UCI (University of California, Irvine) dataset; and it achieves an overall 56.39% of energy saving and the recognition accuracy of 99.58% during the HAR applications with smartphone.


Author(s):  
Cheng Chen ◽  
Qi Dou ◽  
Hao Chen ◽  
Jing Qin ◽  
Pheng-Ann Heng

This paper presents a novel unsupervised domain adaptation framework, called Synergistic Image and Feature Adaptation (SIFA), to effectively tackle the problem of domain shift. Domain adaptation has become an important and hot topic in recent studies on deep learning, aiming to recover performance degradation when applying the neural networks to new testing domains. Our proposed SIFA is an elegant learning diagram which presents synergistic fusion of adaptations from both image and feature perspectives. In particular, we simultaneously transform the appearance of images across domains and enhance domain-invariance of the extracted features towards the segmentation task. The feature encoder layers are shared by both perspectives to grasp their mutual benefits during the end-to-end learning procedure. Without using any annotation from the target domain, the learning of our unified model is guided by adversarial losses, with multiple discriminators employed from various aspects. We have extensively validated our method with a challenging application of crossmodality medical image segmentation of cardiac structures. Experimental results demonstrate that our SIFA model recovers the degraded performance from 17.2% to 73.0%, and outperforms the state-of-the-art methods by a significant margin.


Author(s):  
Minsik Oh ◽  
Sungjoon Park ◽  
Sun Kim ◽  
Heejoon Chae

Abstract Gene expressions are subtly regulated by quantifiable measures of genetic molecules such as interaction with other genes, methylation, mutations, transcription factor and histone modifications. Integrative analysis of multi-omics data can help scientists understand the condition or patient-specific gene regulation mechanisms. However, analysis of multi-omics data is challenging since it requires not only the analysis of multiple omics data sets but also mining complex relations among different genetic molecules by using state-of-the-art machine learning methods. In addition, analysis of multi-omics data needs quite large computing infrastructure. Moreover, interpretation of the analysis results requires collaboration among many scientists, often requiring reperforming analysis from different perspectives. Many of the aforementioned technical issues can be nicely handled when machine learning tools are deployed on the cloud. In this survey article, we first survey machine learning methods that can be used for gene regulation study, and we categorize them according to five different goals: gene regulatory subnetwork discovery, disease subtype analysis, survival analysis, clinical prediction and visualization. We also summarize the methods in terms of multi-omics input types. Then, we explain why the cloud is potentially a good solution for the analysis of multi-omics data, followed by a survey of two state-of-the-art cloud systems, Galaxy and BioVLAB. Finally, we discuss important issues when the cloud is used for the analysis of multi-omics data for the gene regulation study.


Sign in / Sign up

Export Citation Format

Share Document