scholarly journals Optimal Central Frequency for Non-Contact Vital Sign Detection Using Monocycle UWB Radar

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2916 ◽  
Author(s):  
Artit Rittiplang ◽  
Pattarapong Phasukkit ◽  
Teerapong Orankitanun

Ultra-wideband (UWB) radar has become a critical remote-sensing tool for non-contact vital sign detection such as emergency rescues, securities, and biomedicines. Theoretically, the magnitude of the received reflected signal is dependent on the central frequency of mono-pulse waveform used as the transmitted signal. The research is based on the hypothesis that the stronger the received reflected signals, the greater the detectability of life signals. In this paper, we derive a new formula to compute the optimal central frequency to obtain as maximum received reflect signal as possible over the frequency up to the lower range of Ka-band. The proposed formula can be applicable in the optimization of hardware for UWB life detection and non-contact monitoring of vital signs. Furthermore, the vital sign detection results obtained by the UWB radar over a range of central frequency have been compared to those of the former continuous (CW) radar to provide additional information regarding the advantages and disadvantages of each radar.

2021 ◽  
Vol 13 (18) ◽  
pp. 3791
Author(s):  
Xiuzhu Yang ◽  
Xinyue Zhang ◽  
Yi Ding ◽  
Lin Zhang

The monitoring of human activity and vital signs plays a significant role in remote health-care. Radar provides a non-contact monitoring approach without privacy and illumination concerns. However, multiple people in a narrow indoor environment bring dense multipaths for activity monitoring, and the received vital sign signals are heavily distorted with body movements. This paper proposes a framework based on Frequency Modulated Continuous Wave (FMCW) and Impulse Radio Ultra-Wideband (IR-UWB) radars to address these challenges, designing intelligent spatial-temporal information fusion for activity and vital sign monitoring. First, a local binary pattern (LBP) and energy features are extracted from FMCW radar, combined with the wavelet packet transform (WPT) features on IR-UWB radar for activity monitoring. Then the additional information guided fusing network (A-FuseNet) is proposed with a modified generative and adversarial structure for vital sign monitoring. A Cascaded Convolutional Neural Network (CCNN) module and a Long Short Term Memory (LSTM) module are designed as the fusion sub-network for vital sign information extraction and multisensory data fusion, while a discrimination sub-network is constructed to optimize the fused heartbeat signal. In addition, the activity and movement characteristics are introduced as additional information to guide the fusion and optimization. A multi-radar dataset with an FMCW and two IR-UWB radars in a cotton tent, a small room and a wide lobby is constructed, and the accuracies of activity and vital sign monitoring achieve 99.9% and 92.3% respectively. Experimental results demonstrate the superiority and robustness of the proposed framework.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhen Yang ◽  
Chi Ma ◽  
Qingjie Qi ◽  
Xin Li ◽  
Yan Li

When using pulsed ultra-wideband radar (UWB) noncontact detection technology to detect vital signs, weak vital signs echo signals are often covered by various noises, making human targets unable to identify and locate. To solve this problem, a new method for vital sign detection is proposed which is based on impulse ultra-wideband (UWB) radar. The range is determined based on the continuous wavelet transform (CWT) of the variance of the received signals. In addition, the TVF-EMD method is used to obtain the information of respiration and heartbeat frequency. Fifteen sets of experiments were carried out, and the echo radar signals of 5 volunteers at 3 different distances were collected. The analysis results of the measured data showed that the proposed algorithm can accurately and effectively extract the distance to the target human and its vital signs information, which shows vast prospects in research and application.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6695
Author(s):  
Dingyang Wang ◽  
Sungwon Yoo ◽  
Sung Ho Cho

In this paper, we compare the performances of impulse radio ultra-wideband (IR-UWB) and frequency modulation continuous wave (FMCW) radars in measuring noncontact vital signs such as respiration rate and heart rate. These two type radars have been widely used in various fields and have shown their applicability to extract vital signs in noncontact ways. IR-UWB radar can extract vital signs using distance information. On the other hand, FMCW radar requires phase information to estimate vital signs, and the result can be enhanced with Multi-input Multi-output (MIMO) antenna topologies. By using commercial radar chipsets, the operation of radars under different conditions and frequency bands will also affect the performance of vital sign detection capabilities. We compared the accuracy and signal-to-noise (SNR) ratios of IR-UWB and FMCW radars in various scenarios, such as distance, orientation, carotid pulse, harmonics, and obstacle penetration. In general, the IR-UWB radars offer a slightly better accuracy and higher SNR in comparison to FMCW radar. However, each radar system has its own unique advantages, with IR-UWB exhibiting fewer harmonics and a higher SNR, while FMCW can combine the results from each channel.


2017 ◽  
Vol 27 (13) ◽  
pp. 1730046 ◽  
Author(s):  
Hang Xu ◽  
Ying Li ◽  
Jianguo Zhang ◽  
Hong Han ◽  
Bing Zhang ◽  
...  

We propose and experimentally demonstrate an ultra-wideband (UWB) chaos life-detection radar. The proposed radar transmits a wideband chaotic-pulse-position modulation (CPPM) signal modulated by a single-tone sinusoidal wave. A narrow-band split ring sensor is used to collect the reflected sinusoidal wave, and a lock-in amplifier is utilized to identify frequencies of respiration and heartbeat by detecting the phase change of the sinusoidal echo signal. Meanwhile, human location is realized by correlating the CPPM echo signal with its delayed duplicate and combining the synthetic aperture technology. Experimental results demonstrate that the human target can be located accurately and his vital signs can be detected in a large dynamic range through a 20-cm-thick wall using our radar system. The down-range resolution is 15[Formula: see text]cm, benefiting from the 1-GHz bandwidth of the CPPM signal. The dynamic range for human location is 50[Formula: see text]dB, and the dynamic ranges for heartbeat and respiration detection respectively are 20[Formula: see text]dB and 60[Formula: see text]dB in our radar system. In addition, the bandwidth of the CPPM signal can be adjusted from 620[Formula: see text]MHz to 1.56[Formula: see text]GHz to adapt to different requirements.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5735
Author(s):  
Somayyeh Chamaani ◽  
Alireza Akbarpour ◽  
Marko Helbig ◽  
Jürgen Sachs

Microwave sensors have recently been introduced as high-temporal resolution sensors, which could be used in the contactless monitoring of artery pulsation and breathing. However, accurate and efficient signal processing methods are still required. In this paper, the matrix pencil method (MPM), as an efficient method with good frequency resolution, is applied to back-reflected microwave signals to extract vital signs. It is shown that decomposing of the signal to its damping exponentials fulfilled by MPM gives the opportunity to separate signals, e.g., breathing and heartbeat, with high precision. A publicly online dataset (GUARDIAN), obtained by a continuous wave microwave sensor, is applied to evaluate the performance of MPM. Two methods of bandpass filtering (BPF) and variational mode decomposition (VMD) are also implemented. In addition to the GUARDIAN dataset, these methods are also applied to signals acquired by an ultra-wideband (UWB) sensor. It is concluded that when the vital sign is sufficiently strong and pure, all methods, e.g., MPM, VMD, and BPF, are appropriate for vital sign monitoring. However, in noisy cases, MPM has better performance. Therefore, for non-contact microwave vital sign monitoring, which is usually subject to noisy situations, MPM is a powerful method.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5503
Author(s):  
Xinyue Zhang ◽  
Xiuzhu Yang ◽  
Yi Ding ◽  
Yili Wang ◽  
Jialin Zhou ◽  
...  

Vital signs monitoring in physical activity (PA) is of great significance in daily healthcare. Impulse Radio Ultra-WideBand (IR-UWB) radar provides a contactless vital signs detection approach with advantages in range resolution and penetration. Several researches have verified the feasibility of IR-UWB radar monitoring when the target keeps still. However, various body movements are induced by PA, which lead to severe signal distortion and interfere vital signs extraction. To address this challenge, a novel joint chest–abdomen cardiopulmonary signal estimation approach is proposed to detect breath and heartbeat simultaneously using IR-UWB radars. The movements of target chest and abdomen are detected by two IR-UWB radars, respectively. Considering the signal overlapping of vital signs and body motion artifacts, Empirical Wavelet Transform (EWT) is applied on received radar signals to remove clutter and mitigate movement interference. Moreover, improved EWT with frequency segmentation refinement is applied on each radar to decompose vital signals of target chest and abdomen to vital sign-related sub-signals, respectively. After that, based on the thoracoabdominal movement correlation, cross-correlation functions are calculated among chest and abdomen sub-signals to estimate breath and heartbeat. The experiments are conducted under three kinds of PA situations and two general body movements, the results of which indicate the effectiveness and superiority of the proposed approach.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4913 ◽  
Author(s):  
Mi He ◽  
Yongjian Nian ◽  
Luping Xu ◽  
Lihong Qiao ◽  
Wenwu Wang

The non-contact monitoring of vital signs by radar has great prospects in clinical monitoring. However, the accuracy of separated respiratory and heartbeat signals has not satisfied the clinical limits of agreement. This paper presents a study for automated separation of respiratory and heartbeat signals based on empirical wavelet transform (EWT) for multiple people. The initial boundary of the EWT was set according to the limited prior information of vital signs. Using the initial boundary, empirical wavelets with a tight frame were constructed to adaptively separate the respiratory signal, the heartbeat signal and interference due to unconscious body movement. To verify the validity of the proposed method, the vital signs of three volunteers were simultaneously measured by a stepped-frequency continuous wave ultra-wideband (UWB) radar and contact physiological sensors. Compared with the vital signs from contact sensors, the proposed method can separate the respiratory and heartbeat signals among multiple people and obtain the precise rate that satisfies clinical monitoring requirements using a UWB radar. The detection errors of respiratory and heartbeat rates by the proposed method were within ±0.3 bpm and ±2 bpm, respectively, which are much smaller than those obtained by the bandpass filtering, empirical mode decomposition (EMD) and wavelet transform (WT) methods. The proposed method is unsupervised and does not require reference signals. Moreover, the proposed method can obtain accurate respiratory and heartbeat signal rates even when the persons unconsciously move their bodies.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhen Yang ◽  
Jiming Cheng ◽  
Qingjie Qi ◽  
Xin Li ◽  
Yuning Wang

The vital sign information in the echo signal of the UWB radar is weak, because of the interference of complex noise. In this paper, a method named P times extraction of strong vital signs for processing echo signals of UWB radars is proposed. Different noises can be distinguished by the cumulative probability distribution of the echo signal and using different methods for processing according to corresponding characteristics. The vital sign information which most clearly represents the trapped person is selected using P times extraction of strong vital signs; then, the respiration and heartbeat rates are extracted. At 5 different distances, multiple sets of tests were carried out on static trapped persons and micromovement trapped persons and using a computer to extract vital signs from the obtained data. Experimental data shows that the algorithm proposed in this paper can extract the respiration and heartbeat rates of trapped persons, with small relative errors and variances, and has a certain reference value for UWB radar signal processing.


Author(s):  
Xikun Hu ◽  
Tian Jin

The radar sensor described realizes healthcare monitoring capable of detecting subject chest-wall movement caused by cardiopulmonary activities, and wirelessly estimating the respiration and heartbeat rates of the subject without attaching any devices to the body. Conventional single-tone Doppler radar can only capture Doppler signatures because of a lack of bandwidth information with noncontact sensors. In contrast, we take full advantage of impulse radio ultra-wideband (IR-UWB) radar to achieve low power consumption and convenient portability, with a flexible detection range and desirable accuracy. A noise reduction method based on improved ensemble empirical mode decomposition (EEMD) and a vital sign separation method based on the continuous-wavelet transform (CWT) are proposed jointly to improve the signal-to-noise ratio (SNR) in order to acquire accurate respiration and heartbeat rates. Experimental results illustrate that respiration and heartbeat signals can be extracted accurately under different conditions. This noncontact healthcare sensor system proves the commercial feasibility and considerable accessibility of using compact IR-UWB radar for emerging biomedical applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun-Young Park ◽  
Yonggu Lee ◽  
Ran Heo ◽  
Hyun-Kyung Park ◽  
Seok-Hyun Cho ◽  
...  

AbstractRecently, noncontact vital sign monitors have attracted attention because of issues related to the transmission of contagious diseases. We developed a real-time vital sign monitor using impulse-radio ultrawideband (IR-UWB) radar with embedded processors and software; we then evaluated its accuracy in measuring heart rate (HR) and respiratory rate (RR) and investigated the factors affecting the accuracy of the radar-based measurements. In 50 patients visiting a cardiology clinic, HR and RR were measured using IR-UWB radar simultaneously with electrocardiography and capnometry. All patients underwent HR and RR measurements in 2 postures—supine and sitting—for 2 min each. There was a high agreement between the RR measured using radar and capnometry (concordance correlation coefficient [CCC] 0.925 [0.919–0.926]; upper and lower limits of agreement [LOA], − 2.21 and 3.90 breaths/min). The HR measured using radar was also in close agreement with the value measured using electrocardiography (CCC 0.749 [0.738–0.760]; upper and lower LOA, − 12.78 and 15.04 beats/min). Linear mixed effect models showed that the sitting position and an HR < 70 bpm were associated with an increase in the absolute biases of the HR, whereas the sitting position and an RR < 18 breaths/min were associated with an increase in the absolute biases of the RR. The IR-UWB radar sensor with embedded processors and software can measure the RR and HR in real time with high precision. The sitting position and a low RR or HR were associated with the accuracy of RR and HR measurement, respectively, using IR-UWB radar.


Sign in / Sign up

Export Citation Format

Share Document