scholarly journals A Novel Spread Spectrum and Clustering Mixed Approach with Network Coding for Enhanced Narrowband IoT (NB-IoT) Scalability

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5219
Author(s):  
Emmanuel Migabo ◽  
Karim Djouani ◽  
Anish Kurien

The Narrowband Internet of Things (NB-IoT) is a very promising licensed Internet of things (IoT) technology for accommodating massive device connections in 5G and beyond. To enable network scalability, this study proposes a two-layers novel mixed approach that aims not only to create an efficient spectrum sharing among the many NB-IoT devices but also provides an energy-efficient network. On one layer, the approach uses an Adaptive Frequency Hopping Spread Spectrum (AFHSS) technique that uses a lightweight and secure pseudo-random sequence to exploit the channel diversity, to mitigate inter-link and cross-technology interference. On the second layer, the approach consists of a clustering and network coding (data aggregation) approach based on an energy-signal strength mixed gradient. The second layer contributes to offload the BS, allows for energy-efficient network scalability, helps balance the energy consumption of the network, and enhances the overall network lifetime. The proposed mixed strategy algorithm is modelled and simulated using the Matrix Laboratory (MATLAB) Long Term Evolution (LTE) toolbox. The obtained results reveal that the proposed mixed approach enhances network scalability while improving energy efficiency, transmission reliability, and network lifetime when compared to the existing spread spectrum only, nodes clustering only, and mixed approach with no network coding approaches.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Sang-Hyun Park ◽  
Seungryong Cho ◽  
Jung-Ryun Lee

In the future network with Internet of Things (IoT), each of the things communicates with the others and acquires information by itself. In distributed networks for IoT, the energy efficiency of the nodes is a key factor in the network performance. In this paper, we propose energy-efficient probabilistic routing (EEPR) algorithm, which controls the transmission of the routing request packets stochastically in order to increase the network lifetime and decrease the packet loss under the flooding algorithm. The proposed EEPR algorithm adopts energy-efficient probabilistic control by simultaneously using the residual energy of each node and ETX metric in the context of the typical AODV protocol. In the simulations, we verify that the proposed algorithm has longer network lifetime and consumes the residual energy of each node more evenly when compared with the typical AODV protocol.


Author(s):  
G. M. Tamilselvan Tamilselvan ◽  
K. Gandhimathi

Wireless Sensor Network (WSN) consists of low cost tiny sensor nodes with limited energy resource, so it is a tedious task to develop energy efficient routing schemes that enhances the network lifetime. In WSN, clustering is used to improve the efficiency of finite energy resource. LEACH protocol is one of the widely used clustering techniques in WSN. So, in this paper, an energy efficient LEACH protocol is designed with network coding for WSN. Initially, the clusters are formed with the LEACH protocol, where it uses the residual energy metric and drain rate to select the cluster heads.  Since network coding is an optimal technique to enhance the network performance by minimizing the number of transmissions, it is incorporated into the LEACH Protocol, where it has been applied at the cluster head levels. Furthermore, the next level of network coding is processed at a node by selecting any of the nodes as a master node. The simulation results show that the proposed scheme performs better than the EE-LEACH and LEACH protocol in terms of network lifetime, packet delivery ratio.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


Author(s):  
Mohit Kumar ◽  
Sonu Mittal ◽  
Md. Amir Khusru Akhtar

Background: This paper presents a novel Energy Efficient Clustering and Routing Algorithm (EECRA) for WSN. It is a clustering-based algorithm that minimizes energy dissipation in wireless sensor networks. The proposed algorithm takes into consideration energy conservation of the nodes through its inherent architecture and load balancing technique. In the proposed algorithm the role of inter-cluster transmission is not performed by gateways instead a chosen member node of respective cluster is responsible for data forwarding to another cluster or directly to the sink. Our algorithm eases out the load of the gateways by distributing the transmission load among chosen sensor node which acts as a relay node for inter-cluster communication for that round. Grievous simulations show that EECRA is better than PBCA and other algorithms in terms of energy consumption per round and network lifetime. Objective: The objective of this research lies in its inherent architecture and load balancing technique. The sole purpose of this clustering-based algorithm is that it minimizes energy dissipation in wireless sensor networks. Method: This algorithm is tested with 100 sensor nodes and 10 gateways deployed in the target area of 300m × 300m. The round assumed in this simulation is same as in LEACH. The performance metrics used for comparisons are (a) network lifetime of gateways and (b) energy consumption per round by gateways. Our algorithm gives superior result compared to LBC, EELBCA and PBCA. Fig 6 and Fig 7 shows the comparison between the algorithms. Results: The simulation was performed on MATLAB version R2012b. The performance of EECRA is compared with some existing algorithms like PBCA, EELBCA and LBCA. The comparative analysis shows that the proposed algorithm outperforms the other existing algorithms in terms of network lifetime and energy consumption. Conclusion: The novelty of this algorithm lies in the fact that the gateways are not responsible for inter-cluster forwarding, instead some sensor nodes are chosen in every cluster based on some cost function and they act as a relay node for data forwarding. Note the algorithm does not address the hot-spot problem. Our next endeavor will be to design an algorithm with consideration of hot-spot problem.


Sign in / Sign up

Export Citation Format

Share Document