An Energy Efficient and Network Lifetime Enhancement Method using Network Coding in MANET

Author(s):  
Neha A. Muddebihal ◽  
Abid H. Syed ◽  
Zakir Ali
Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5219
Author(s):  
Emmanuel Migabo ◽  
Karim Djouani ◽  
Anish Kurien

The Narrowband Internet of Things (NB-IoT) is a very promising licensed Internet of things (IoT) technology for accommodating massive device connections in 5G and beyond. To enable network scalability, this study proposes a two-layers novel mixed approach that aims not only to create an efficient spectrum sharing among the many NB-IoT devices but also provides an energy-efficient network. On one layer, the approach uses an Adaptive Frequency Hopping Spread Spectrum (AFHSS) technique that uses a lightweight and secure pseudo-random sequence to exploit the channel diversity, to mitigate inter-link and cross-technology interference. On the second layer, the approach consists of a clustering and network coding (data aggregation) approach based on an energy-signal strength mixed gradient. The second layer contributes to offload the BS, allows for energy-efficient network scalability, helps balance the energy consumption of the network, and enhances the overall network lifetime. The proposed mixed strategy algorithm is modelled and simulated using the Matrix Laboratory (MATLAB) Long Term Evolution (LTE) toolbox. The obtained results reveal that the proposed mixed approach enhances network scalability while improving energy efficiency, transmission reliability, and network lifetime when compared to the existing spread spectrum only, nodes clustering only, and mixed approach with no network coding approaches.


Author(s):  
G. M. Tamilselvan Tamilselvan ◽  
K. Gandhimathi

Wireless Sensor Network (WSN) consists of low cost tiny sensor nodes with limited energy resource, so it is a tedious task to develop energy efficient routing schemes that enhances the network lifetime. In WSN, clustering is used to improve the efficiency of finite energy resource. LEACH protocol is one of the widely used clustering techniques in WSN. So, in this paper, an energy efficient LEACH protocol is designed with network coding for WSN. Initially, the clusters are formed with the LEACH protocol, where it uses the residual energy metric and drain rate to select the cluster heads.  Since network coding is an optimal technique to enhance the network performance by minimizing the number of transmissions, it is incorporated into the LEACH Protocol, where it has been applied at the cluster head levels. Furthermore, the next level of network coding is processed at a node by selecting any of the nodes as a master node. The simulation results show that the proposed scheme performs better than the EE-LEACH and LEACH protocol in terms of network lifetime, packet delivery ratio.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


Author(s):  
Mohit Kumar ◽  
Sonu Mittal ◽  
Md. Amir Khusru Akhtar

Background: This paper presents a novel Energy Efficient Clustering and Routing Algorithm (EECRA) for WSN. It is a clustering-based algorithm that minimizes energy dissipation in wireless sensor networks. The proposed algorithm takes into consideration energy conservation of the nodes through its inherent architecture and load balancing technique. In the proposed algorithm the role of inter-cluster transmission is not performed by gateways instead a chosen member node of respective cluster is responsible for data forwarding to another cluster or directly to the sink. Our algorithm eases out the load of the gateways by distributing the transmission load among chosen sensor node which acts as a relay node for inter-cluster communication for that round. Grievous simulations show that EECRA is better than PBCA and other algorithms in terms of energy consumption per round and network lifetime. Objective: The objective of this research lies in its inherent architecture and load balancing technique. The sole purpose of this clustering-based algorithm is that it minimizes energy dissipation in wireless sensor networks. Method: This algorithm is tested with 100 sensor nodes and 10 gateways deployed in the target area of 300m × 300m. The round assumed in this simulation is same as in LEACH. The performance metrics used for comparisons are (a) network lifetime of gateways and (b) energy consumption per round by gateways. Our algorithm gives superior result compared to LBC, EELBCA and PBCA. Fig 6 and Fig 7 shows the comparison between the algorithms. Results: The simulation was performed on MATLAB version R2012b. The performance of EECRA is compared with some existing algorithms like PBCA, EELBCA and LBCA. The comparative analysis shows that the proposed algorithm outperforms the other existing algorithms in terms of network lifetime and energy consumption. Conclusion: The novelty of this algorithm lies in the fact that the gateways are not responsible for inter-cluster forwarding, instead some sensor nodes are chosen in every cluster based on some cost function and they act as a relay node for data forwarding. Note the algorithm does not address the hot-spot problem. Our next endeavor will be to design an algorithm with consideration of hot-spot problem.


2011 ◽  
Vol 216 ◽  
pp. 176-180
Author(s):  
Yong Ding ◽  
Yue Mei Su

Wireless Sensor Networks functionality is closely related to network lifetime which depends on the energy consumption, so require energy- efficient protocols to improve the network lifetime. According to the analysis and summary of the current energy efficient estimation algorithms in wireless sensor network An energy-efficient algorithm is proposed,. Then this optimization algorithm proposed in the paper is adopted to improve the traditional diffusion routing protocol. Simulation results show that this algorithm is to effectively balance the network energy consumption, improve the network life-cycle and ensure the communication quality.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 537
Author(s):  
Mohammad Baniata ◽  
Haftu Tasew Reda ◽  
Naveen Chilamkurti ◽  
Alsharif Abuadbba

One of the major concerns in wireless sensor networks (WSNs) is most of the sensor nodes are powered through limited lifetime of energy-constrained batteries, which majorly affects the performance, quality, and lifetime of the network. Therefore, diverse clustering methods are proposed to improve energy efficiency of the WSNs. In the meantime, fifth-generation (5G) communications require that several Internet of Things (IoT) applications need to adopt the use of multiple-input multiple-output (MIMO) antenna systems to provide an improved capacity over multi-path channel environment. In this paper, we study a clustering technique for MIMO-based IoT communication systems to achieve energy efficiency. In particular, a novel MIMO-based energy-efficient unequal hybrid clustering (MIMO-HC) protocol is proposed for applications on the IoT in the 5G environment and beyond. Experimental analysis is conducted to assess the effectiveness of the suggested MIMO-HC protocol and compared with existing state-of-the-art research. The proposed MIMO-HC scheme achieves less energy consumption and better network lifetime compared to existing techniques. Specifically, the proposed MIMO-HC improves the network lifetime by approximately 3× as long as the first node and the final node dies as compared with the existing protocol. Moreover, the energy that cluster heads consume on the proposed MIMO-HC is 40% less than that expended in the existing protocol.


Sign in / Sign up

Export Citation Format

Share Document