scholarly journals A Sensor Fusion Method for Pose Estimation of C-Legged Robots

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6741
Author(s):  
Jorge De León ◽  
Raúl Cebolla ◽  
Antonio Barrientos

In this work the authors present a novel algorithm for estimating the odometry of “C” legged robots with compliant legs and an analysis to estimate the pose of the robot. Robots with “C” legs are an alternative to wheeled and tracked robots for overcoming obstacles that can be found in different scenarios like stairs, debris, etc. Therefore, this kind of robot has become very popular for its locomotion capabilities, but at this point these robots do not have developed algorithms to implement autonomous navigation. With that objective in mind, the authors present a novel algorithm using the encoders of the legs to improve the estimation of the robot localization together with other sensors. Odometry is necessary for using some algorithms like the Extended Kalman Filter, which is used for some autonomous navigation algorithms. Due to the flexible properties of the “C” legs and the localization of the rotational axis, obtaining the displacement at every step is not as trivial as in a wheeled robot; to solve those complexities, the algorithm presented in this work makes a linear approximation of the leg compressed instead of calculating in each iteration the mechanics of the leg using finite element analysis, so the calculus level is reduced. Furthermore, the algorithm was tested in simulations and with a real robot. The results obtained in the tests are promising and together with the algorithm and fusion sensor can be used to endow the robots with autonomous navigation.

2007 ◽  
Vol 74 (3) ◽  
pp. 237-260 ◽  
Author(s):  
Eric Royer ◽  
Maxime Lhuillier ◽  
Michel Dhome ◽  
Jean-Marc Lavest

2016 ◽  
Vol 852 ◽  
pp. 832-838
Author(s):  
S. Vasanth ◽  
M. Harikrishnan ◽  
K. Abbhivignesh ◽  
B. Karthikeyan ◽  
M. Vignesh

The conventional mobile robotic platforms which either uses wheels or legs are quite familiar and each one of them has its own advantages and disadvantages. The wheeled robot is suitable for only plain and smooth terrain, whereas the legged robot can travel in any kind of terrain but is comparatively slower than the wheeled robot. So, a hybrid of both wheeled and legged platform would be quite suitable for any kind of terrain. The primary focus of this paper is to design and develop a leg-wheel hybrid robotic platform with a concurrent engineering and mechatronics approach to produce results with optimised design metrics at each and every stage of its development. An overall view of the entire mechatronics system is considered for design and development of the robot at each and every stage rather than a sequential engineering approach. This paper details the Finite Element Analysis (FEA) of the C – Legs which are used in the robot.


Author(s):  
Lee Gim Hee ◽  
◽  
Marcelo H. Ang Jr. ◽  

Global path planning algorithms are good in planning an optimal path in a known environment, but would fail in an unknown environment and when reacting to dynamic and unforeseen obstacles. Conversely, local navigation algorithms perform well in reacting to dynamic and unforeseen obstacles but are susceptible to local minima failures. A hybrid integration of both the global path planning and local navigation algorithms would allow a mobile robot to find an optimal path and react to any dynamic and unforeseen obstacles during an operation. However, the hybrid method requires the robot to possess full or partial prior information of the environment for path planning and would fail in a totally unknown environment. The integrated algorithm proposed and implemented in this paper incorporates an autonomous exploration technique into the hybrid method. The algorithm gives a mobile robot the ability to plan an optimal path and does online collision avoidance in a totally unknown environment.


2020 ◽  
Vol 5 (12) ◽  
pp. 24-33
Author(s):  
Eric Gratton ◽  
Mbadiwe Benyeogor ◽  
Kosisochukwu Nnoli ◽  
Oladayo Olakanmi ◽  
Liam Wolf ◽  
...  

For a robot to navigate in terrains of rough and uneven topographies, its drives and controllers must generate and control large mechanical power with great precision. This paper is aimed at developing an autonomous robot with active-suspensions in form of a hybrid quadrupedal-wheel drive mechanism. This involves a computational approach to optimizing the development cost without compromising the system’s performance. Using the Solidworks CAD tool, auxiliary components were designed and integrated with the bed structure to form an actively suspended robot drive mechanism. Also, using the S-Math Computing tool, the robot’s suspension system was optimized, employing a four-bar mechanism. To enhance the compatibility of this design with the intended controller, some mathematical equations and numerical validations were formulated and solved. These included the modeling of tip-over stability and skid steering, the trendline equations for computing the angular positions of the suspension servomotors, and the computation of R2– values for determining the accuracy of these trendline equations. Using finite element analysis (FEA), we simulated the structural integrity of key sub-components of the final structure. The results show that our mechanical design is appropriate for developing an actively suspended robot that can efficiently navigate in different terrestrial sites and topographies.


2018 ◽  
Vol 72 (3) ◽  
pp. 649-668
Author(s):  
Yang Tian ◽  
Meng Yu ◽  
Meibao Yao ◽  
Xiangyu Huang

In this paper, a novel method for autonomous navigation for an extra-terrestrial body landing mission is proposed. Based on state-of-the-art crater detection and matching algorithms, a crater edge-based navigation method is formulated, in which solar illumination direction is adopted as a complementary optical cue to aid crater edge-based navigation when only one crater is available. To improve the pose estimation accuracy, a distributed Extended Kalman Filter (EKF) is developed to encapsulate the crater edge-based estimation approach. Finally, the effectiveness of proposed approach is validated by Monte Carlo simulations using a specifically designed planetary landing simulation toolbox.


Sign in / Sign up

Export Citation Format

Share Document