scholarly journals Characterization and Neural Modeling of a Microwave Gas Sensor for Oxygen Detection Aimed at Healthcare Applications

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7150
Author(s):  
Zlatica Marinković ◽  
Giovanni Gugliandolo ◽  
Mariangela Latino ◽  
Giuseppe Campobello ◽  
Giovanni Crupi ◽  
...  

The studied sensor consists of a microstrip interdigital capacitor covered by a gas sensing layer made of titanium dioxide (TiO2). To explore the gas sensing properties of the developed sensor, oxygen detection is considered as a case study. The sensor is electrically characterized using the complex scattering parameters measured with a vector network analyzer (VNA). The experimental investigation is performed over a frequency range of 1.5 GHz to 2.9 GHz by placing the sensor inside a polytetrafluoroethylene (PTFE) test chamber with a binary gas mixture composed of oxygen and nitrogen. The frequency-dependent response of the sensor is investigated in detail and further modelled using an artificial neural network (ANN) approach. The proposed modelling procedure allows mimicking the measured sensor performance over the whole range of oxygen concentration, going from 0% to 100%, and predicting the behavior of the resonant frequencies that can be used as sensing parameters.

2010 ◽  
Vol 148-149 ◽  
pp. 1042-1046
Author(s):  
Jin Yang Lin ◽  
Yong Ai Zhang ◽  
Ling Jie Wang ◽  
Tai Liang Guo

Novel tungsten oxide sensors were fabricated based on Hall Effect and their NO2 gas sensing properties were examined. Tungsten trioxide was grown by vapor evaporation of metal tungsten filament in an oxygen atmosphere. A WO3 thick film was deposited on the four Au electrode to be a WO3 sensor. The sensor was tested between magnetic field in a plastic test chamber. The gas sensing experiment revealed that at the NO2 concentration of 40 ppm, a sensitivity of 3.27, a response time of 36 s, and a recovery time of 45 s were observed at room-temperature. The effect of WO3 based on Hall Effect on the sensing characteristic is discussed.


2013 ◽  
Vol 582 ◽  
pp. 210-213 ◽  
Author(s):  
Junichi Hamagami ◽  
Ryo Araki ◽  
Shohei Onimaru ◽  
G. Kawamura ◽  
Atsunori Matsuda

We reported that titania ceramic coating loaded with palladium catalyst worked as an optical hydrogen gas sensor at room temperature. The palladium metal of this sensor worked as a catalyst not only for room-temperature operation but also for high selectivity to hydrogen gas. Precise control of metal/ceramic interface between the titania and the palladium was very important in order to improve the sensor performance such as sensitivity, response time, recovery time. Influence of a difference in palladium-catalyst loading method (photodeposition and sputtering) on the optical hydrogen gas sensing properties for the titania-based sensor was investigated. It was found that the catalytic loading process significantly affected the optical hydrogen characteristics of the titania-based coating.


2008 ◽  
Vol 8 (5) ◽  
pp. 1774-1778 ◽  
Author(s):  
Mauro Epifani ◽  
Jordi Arbiol ◽  
Eva Pellicer ◽  
Elisabetta Comini ◽  
Pietro Siciliano ◽  
...  

Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


2013 ◽  
Vol 28 (6) ◽  
pp. 584-588 ◽  
Author(s):  
Shuang XU ◽  
Ying YANG ◽  
Hong-Yuan WU ◽  
Chao JIANG ◽  
Li-Qiang JING ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3947
Author(s):  
Wei Wang ◽  
Qinyi Zhang ◽  
Ruonan Lv ◽  
Dong Wu ◽  
Shunping Zhang

High performance formaldehyde gas sensors are widely needed for indoor air quality monitoring. A modified layer of zeolite on the surface of metal oxide semiconductors results in selectivity improvement to formaldehyde as gas sensors. However, there is insufficient knowledge on how the thickness of the zeolite layer affects the gas sensing properties. In this paper, ZSM-5 zeolite films were coated on the surface of the SnO2 gas sensors by the screen printing method. The thickness of ZSM-5 zeolite films was controlled by adjusting the numbers of screen printing layers. The influence of ZSM-5 film thickness on the performance of ZSM-5/SnO2 gas sensors was studied. The results showed that the ZSM-5/SnO2 gas sensors with a thickness of 19.5 μm greatly improved the selectivity to formaldehyde, and reduced the response to ethanol, acetone and benzene at 350 °C. The mechanism of the selectivity improvement to formaldehyde of the sensors was discussed.


Sign in / Sign up

Export Citation Format

Share Document