scholarly journals Enhanced Quarter Spherical Acoustic Energy Harvester Based on Dual Helmholtz Resonators

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7275
Author(s):  
Xincun Ji ◽  
Lei Yang ◽  
Zhicheng Xue ◽  
Licheng Deng ◽  
Debo Wang

An enhanced quarter-spherical acoustic energy harvester (AEH) with dual Helmholtz resonators was designed in this work. Compared with the previous research, this AEH can harvest multi-directional acoustic energy, has a widened resonance frequency band, and has an improved energy conversion efficiency. When the length of resonator’s neck is changed, the acoustic resonant frequency of the two resonators is different. The theoretical models of output voltage and output power were studied, and the relationship of output performance with frequency was obtained. The results showed that this AEH can operate efficiently in a frequency band of about 470 Hz. Its output voltage was found to be about 28 mV, and its output power was found to be about 0.05 μW. The power density of this AEH was found to be about 12.7 µW/cm2. Therefore, this AEH could be widely used in implantable medical devices such as implantable cardiac pacemakers, cochlear implants, and retinal prosthesis.

Author(s):  
Licheng Deng ◽  
Lei Yang ◽  
Zhicheng Xue ◽  
Qingying Ren ◽  
Debo Wang

An omnidirectional acoustic energy harvester (AEH) based on six Helmholtz resonators is proposed in this work. Compared with the previous structure, the insufficiency of the directionality and conversion efficiency of energy collection can be effectively improved due to the coupling of six resonators. Based on the distributed parameter model, the relationship of the electrical output, the input frequency with the structure size is obtained. The simulation results show that the maximum output voltage is 70.95 mV at the resonant frequency of 35 kHz. When the external load resistance is 14 kΩ, the maximum output power is 0.45 μW. Moreover, the energy conversion efficiency of this omnidirectional AEH can reach 23%, which is improved greatly compared with the traditional structure. Therefore, this AEH will have a wide range of application prospects in medical implantation equipment and other fields.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3861
Author(s):  
Jie Mei ◽  
Qiong Fan ◽  
Lijie Li ◽  
Dingfang Chen ◽  
Lin Xu ◽  
...  

With the rapid development of wearable electronics, novel power solutions are required to adapt to flexible surfaces for widespread applications, thus flexible energy harvesters have been extensively studied for their flexibility and stretchability. However, poor power output and insufficient sensitivity to environmental changes limit its widespread application in engineering practice. A doubly clamped flexible piezoelectric energy harvester (FPEH) with axial excitation is therefore proposed for higher power output in a low-frequency vibration environment. Combining the Euler–Bernoulli beam theory and the D’Alembert principle, the differential dynamic equation of the doubly clamped energy harvester is derived, in which the excitation mode of axial load with pre-deformation is considered. A numerical solution of voltage amplitude and average power is obtained using the Rayleigh–Ritz method. Output power of 22.5 μW at 27.1 Hz, with the optimal load resistance being 1 MΩ, is determined by the frequency sweeping analysis. In order to power electronic devices, the converted alternating electric energy should be rectified into direct current energy. By connecting to the MDA2500 standard rectified electric bridge, a rectified DC output voltage across the 1 MΩ load resistor is characterized to be 2.39 V. For further validation of the mechanical-electrical dynamical model of the doubly clamped flexible piezoelectric energy harvester, its output performances, including both its frequency response and resistance load matching performances, are experimentally characterized. From the experimental results, the maximum output power is 1.38 μW, with a load resistance of 5.7 MΩ at 27 Hz, and the rectified DC output voltage reaches 1.84 V, which shows coincidence with simulation results and is proved to be sufficient for powering LED electronics.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 640
Author(s):  
Nannan Zhou ◽  
Rongqi Li ◽  
Hongrui Ao ◽  
Chuanbing Zhang ◽  
Hongyuan Jiang

With the rapid development of microelectronics technology, low-power electronic sensors have been widely applied in many fields, such as Internet of Things, aerospace, and so on. In this paper, a symmetrical ring-shaped piezoelectric energy harvester (SR-PEH) is designed to provide energy for the sensor to detect the ambient temperature. The finite element method is used by utilizing software COMSOL 5.4, and the electromechanical coupling model of the piezoelectric cantilever is established. The output performance equations are proposed; the microelectromechanical system (MEMS) integration process of the SR-PEH, circuit, and sensor is stated; and the changing trend of the output power density is explained from an energy perspective. In the logarithmic coordinate system, the results indicate that the output voltage and output power are approximately linear with the temperature when the resistance is constant. In addition, the growth rate of the output voltage and output power decreases with an increase of resistance under the condition of constant temperature. In addition, with an increase of temperature, the growth rate of the output power is faster than that of the output voltage. Furthermore, resistance has a more dramatic effect on the output voltage, whereas temperature has a more significant effect on the output power. More importantly, the comparison with the conventional cantilever-shaped piezoelectric energy harvester (CC-PEH) shows that the SR-PEH can improve the output performance and broaden the frequency band.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tian-Chen Yuan ◽  
Fei Chen ◽  
Jian Yang ◽  
Rui-Gang Song ◽  
Yong Kong

To harvest acoustic energy from urban railways, a novel and practical acoustic energy harvester is developed. The harvester consists of a piezoelectric circular plate and a Helmholtz resonator. Based on the field test data of urban railways, the resonance frequencies of the piezoelectric circular plate and the Helmholtz resonator are near 800 Hz. The Helmholtz resonator is designed to amplify the sound pressure. Thus, a lumped parameter model is established. The piezoelectric circular plate is used to convert mechanical energy into electrical energy. The simulation results show that the output power of the harvester is approximately 25 μW and the maximum voltage is 0.149 V under the excitation of urban railway noise. The experiment device is also developed. The maximum output power of the harvester is 8.452 μW, and the maximum voltage is 0.082 V. The experimental and the numerical results are in good agreement and demonstrate the effectiveness of the proposed acoustic energy harvester.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 5009
Author(s):  
Seonho Seok ◽  
Cong Wang ◽  
Elie Lefeuvre ◽  
Jungyul Park

This paper presents an autonomous energy harvester based on a textile-based enzymatic biofuel cell, enabling an efficient power management and on-demand usage. The proposed biofuel cell works by an enzymatic reaction with glucose in sweat absorbed by the specially designed textile for sustainable and efficient energy harvesting. The output power of the textile-based biofuel cell has been optimized by changing electrode size and stacking electrodes and corresponding fluidic channels suitable for following power management circuit. The output power level of single electrode is estimated less than 0.5 μW and thus a two-staged power management circuit using intermediate supercapacitor has been presented. As a solution to produce a higher power level, multiple stacks of biofuel cell electrodes have been proposed and thus the textile-based biofuel cell employing serially connected 5 stacks produces a maximal power of 13 μW with an output voltage of 0.88 V when load resistance is 40 kΩ. A buck-boost converter employing a crystal oscillator directly triggered by DC output voltage of the biofuel cell makes it possible to obtain output voltage of the DC–DC converter is 6.75 V. The efficiency of the DC–DC converter is estimated as approximately 50% when the output power of the biofuel cell is tens microwatts. In addition, LT-spice modeling and simulation has been presented to estimate power consumption of each element of the proposed DC–DC converter circuit and the predicted output voltage has good agreement with measurement result.


2013 ◽  
Vol 60 (10) ◽  
pp. 2121-2128 ◽  
Author(s):  
Xiao Peng ◽  
Yumei Wen ◽  
Ping Li ◽  
Aichao Yang ◽  
Xiaoling Bai

Author(s):  
Yu Chen ◽  
Zhichun Yang ◽  
Zhaolin Chen ◽  
Kui Li ◽  
Shengxi Zhou

A multi-bifurcated cantilever piezoelectric energy harvester (BCPEH) is designed and verified to achieve a wide and adjustable response frequency band. The theoretical model is derived based on the Euler-Bernoulli beam theory and continuity boundary conditions to investigate the dynamic response of the BCPEH. The displacement frequency response function and the voltage frequency response function of the BCPEH are deduced based on the Galerkin method, and the theoretical results of a typical multi-bifurcated cantilever piezoelectric energy harvester, the Y-shaped BCPEH, are verified by the finite element method (FEM) and experiments. In addition, by comparing experimental output power of the Y-shaped BCPEH with that of the traditional cantilever-based piezoelectric energy harvester with the same mass of the bifurcated part at the beam-tip, it demonstrates that the Y-shaped BCPEH has a wider operational frequency band. Moreover, it is found that the Y-shaped BCPEH can be designed with an asymmetric configuration to adjust its response frequency distribution. The number of resonant frequencies and the output power of the asymmetric Y-shaped BCPEH are higher than that of the symmetric Y-shaped BCPEH. And the Y-shaped BCPEH has even better performance than L-shaped BCPEH. This study provides a new design concept for enhanced energy harvester.


2020 ◽  
Vol 87 (9) ◽  
pp. 575-585
Author(s):  
Suresh Kote ◽  
Shankar Krishnapillai ◽  
Sujatha Chandramohan

AbstractIn piezoelectric energy harvesting devices, the relative displacement between the two ends of the harvester beam decides the output power from the piezoelectric patch. A novel four bar mechanism with a helical spring is used as a dynamic magnifier to improve the relative displacement and thereby the output power from the harvester. This dynamic magnifier is placed between the base excitation location and the composite harvester beam to form two degrees of freedom (2DOF) piezoelectric energy harvester. Electromechanical coupled analytical equations for the voltage and output power are derived using a lumped electromechanical model. The model is developed assuming linear transverse vibrations of the harvester. A dynamic magnifier is fabricated for the required frequency range and the suitable dimensions of the harvester beam are estimated using commercially available software. Experiments are conducted for base excitation amplitude of 0.05 mm and the performance of the proposed 2DOF harvester is studied for the output voltage and power. The proposed 2DOF harvester has shown 110 % improvement in output power in first mode and 270 % improvement in second mode compared to the conventional single degree of freedom (SDOF) cantilevered harvester for given identical input conditions. The measured frequencies and output power are validated with analytical solutions and are found to be in good agreement. Further, the effect of mass ratio, stiffness ratio and base excitation amplitude on the output voltage and power is investigated using analytical expressions.


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 963
Author(s):  
Chaoqun Xu ◽  
Yuanbo Li ◽  
Tongqing Yang

Piezoelectric energy harvesting technology using the piezoelectric circular diaphragm (PCD) has drawn much attention because it has great application potential in replacing chemical batteries to power microelectronic devices. In this article, we have found a non-uniform strain distribution inside the PCD energy harvester. From the edge to the center of the ceramic disk, its output voltage first increases and then decreases. This uneven output voltage reduces the output power of the PCD energy harvester. Based on this phenomenon, we reduce the ceramic disk diameter and dig a hole in the center, analyzing the effect of removing the ceramic disk’s low output voltage part on the PCD energy harvester. The experimental results show that removing the ceramic disk’s low output voltage part can improve the output power, reduce the resonance frequency, and increase the optimal impedance of the PCD energy harvester. Under the conditions of 10 g proof mass, 9.8 m/s2 acceleration, the PCD energy harvester with a 19-mm diameter and a 6-mm hole can reach a maximum output power of 8.34 mW.


Sign in / Sign up

Export Citation Format

Share Document