Design, modeling, and experiment of a multi-bifurcated cantilever piezoelectric energy harvester

Author(s):  
Yu Chen ◽  
Zhichun Yang ◽  
Zhaolin Chen ◽  
Kui Li ◽  
Shengxi Zhou

A multi-bifurcated cantilever piezoelectric energy harvester (BCPEH) is designed and verified to achieve a wide and adjustable response frequency band. The theoretical model is derived based on the Euler-Bernoulli beam theory and continuity boundary conditions to investigate the dynamic response of the BCPEH. The displacement frequency response function and the voltage frequency response function of the BCPEH are deduced based on the Galerkin method, and the theoretical results of a typical multi-bifurcated cantilever piezoelectric energy harvester, the Y-shaped BCPEH, are verified by the finite element method (FEM) and experiments. In addition, by comparing experimental output power of the Y-shaped BCPEH with that of the traditional cantilever-based piezoelectric energy harvester with the same mass of the bifurcated part at the beam-tip, it demonstrates that the Y-shaped BCPEH has a wider operational frequency band. Moreover, it is found that the Y-shaped BCPEH can be designed with an asymmetric configuration to adjust its response frequency distribution. The number of resonant frequencies and the output power of the asymmetric Y-shaped BCPEH are higher than that of the symmetric Y-shaped BCPEH. And the Y-shaped BCPEH has even better performance than L-shaped BCPEH. This study provides a new design concept for enhanced energy harvester.

2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Fengxia Wang

Abstract In this work, a parametric model for a frequency-up-conversion piezoelectric energy harvester (PEH) was developed based on the Galerkin method. The PEH is composed of a piezoelectric bimorph and a stopper, which was subjected to a harmonic excitation. Although backward coupling results in a structure dynamic damping, models with neglected backward coupling were often adopted to estimate the output power of a piezoelectric energy harvester. The purpose of this work is to examine the effect of backward coupling on the dynamic response and the output power generation for a frequency-up-conversion PEH. With the same base excitations, we compared the dynamics and output energies of two cases: (1) neglecting the backward coupling effect (BCE) in the model and (2) including the BCE in the model. To obtain the optimum gap with maximum output power, we studied the relationship between the output power and the gap of the steady-state solutions. From the analytical results, it was found that the BCE can be neglected as long as there is no impact or the output power is small. However, once impacts get involved, the piezoelectric backward effect dominates the total damping due to small mechanical damping which is true for most PEH. The backward coupling will significantly diminish both the vibration and output power. Therefore, if the BCE is neglected in an impact-driven frequency-up-conversion PEH, the simplified model will exaggerate the output power.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 89
Author(s):  
Qingxia Zhang ◽  
Jilin Hou ◽  
Zhongdong Duan ◽  
Łukasz Jankowski ◽  
Xiaoyang Hu

Road roughness is an important factor in road network maintenance and ride quality. This paper proposes a road-roughness estimation method using the frequency response function (FRF) of a vehicle. First, based on the motion equation of the vehicle and the time shift property of the Fourier transform, the vehicle FRF with respect to the displacements of vehicle–road contact points, which describes the relationship between the measured response and road roughness, is deduced and simplified. The key to road roughness estimation is the vehicle FRF, which can be estimated directly using the measured response and the designed shape of the road based on the least-squares method. To eliminate the singular data in the estimated FRF, the shape function method was employed to improve the local curve of the FRF. Moreover, the road roughness can be estimated online by combining the estimated roughness in the overlapping time periods. Finally, a half-car model was used to numerically validate the proposed methods of road roughness estimation. Driving tests of a vehicle passing over a known-sized hump were designed to estimate the vehicle FRF, and the simulated vehicle accelerations were taken as the measured responses considering a 5% Gaussian white noise. Based on the directly estimated vehicle FRF and updated FRF, the road roughness estimation, which considers the influence of the sensors and quantity of measured data at different vehicle speeds, is discussed and compared. The results show that road roughness can be estimated using the proposed method with acceptable accuracy and robustness.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3861
Author(s):  
Jie Mei ◽  
Qiong Fan ◽  
Lijie Li ◽  
Dingfang Chen ◽  
Lin Xu ◽  
...  

With the rapid development of wearable electronics, novel power solutions are required to adapt to flexible surfaces for widespread applications, thus flexible energy harvesters have been extensively studied for their flexibility and stretchability. However, poor power output and insufficient sensitivity to environmental changes limit its widespread application in engineering practice. A doubly clamped flexible piezoelectric energy harvester (FPEH) with axial excitation is therefore proposed for higher power output in a low-frequency vibration environment. Combining the Euler–Bernoulli beam theory and the D’Alembert principle, the differential dynamic equation of the doubly clamped energy harvester is derived, in which the excitation mode of axial load with pre-deformation is considered. A numerical solution of voltage amplitude and average power is obtained using the Rayleigh–Ritz method. Output power of 22.5 μW at 27.1 Hz, with the optimal load resistance being 1 MΩ, is determined by the frequency sweeping analysis. In order to power electronic devices, the converted alternating electric energy should be rectified into direct current energy. By connecting to the MDA2500 standard rectified electric bridge, a rectified DC output voltage across the 1 MΩ load resistor is characterized to be 2.39 V. For further validation of the mechanical-electrical dynamical model of the doubly clamped flexible piezoelectric energy harvester, its output performances, including both its frequency response and resistance load matching performances, are experimentally characterized. From the experimental results, the maximum output power is 1.38 μW, with a load resistance of 5.7 MΩ at 27 Hz, and the rectified DC output voltage reaches 1.84 V, which shows coincidence with simulation results and is proved to be sufficient for powering LED electronics.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 144
Author(s):  
Yan Zhang ◽  
Jijian Lian ◽  
Songhui Li ◽  
Yanbing Zhao ◽  
Guoxin Zhang ◽  
...  

Ground vibrations induced by large flood discharge from a dam can damage surrounding buildings and impact the quality of life of local residents. If ground vibrations could be predicted during flood discharge, the ground vibration intensity could be mitigated by controlling or tuning the discharge conditions by, for example, changing the flow rate, changing the opening method of the orifice, and changing the upstream or downstream water level, thereby effectively preventing damage. This study proposes a prediction method with a modified frequency response function (FRF) and applies it to the in situ measured data of Xiangjiaba Dam. A multiple averaged power spectrum FRF (MP-FRF) is derived by analyzing four major factors when the FRF is used: noise, system nonlinearity, spectral leakages, and signal latency. The effects of the two types of vibration source as input are quantified. The impact of noise on the predicted amplitude is corrected based on the characteristics of the measured signal. The proposed method involves four steps: signal denoising, MP-FRF estimation, vibration prediction, and noise correction. The results show that when the vibration source and ground vibrations are broadband signals and two or more bands with relative high energies, the frequency distribution of ground vibration can be predicted with MP-FRF by filtering both the input and output. The amplitude prediction loss caused by filtering can be corrected by adding a constructed white noise signal to the prediction result. Compared with using the signal at multiple vibration sources after superimposed as input, using the main source as input improves the accuracy of the predicted frequency distribution. The proposed method can predict the dominant frequency and the frequency bands with relative high energies of the ground vibration downstream of Xiangjiaba Dam. The predicted amplitude error is 9.26%.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 803
Author(s):  
Zhongjie Li ◽  
Chuanfu Xin ◽  
Yan Peng ◽  
Min Wang ◽  
Jun Luo ◽  
...  

A novel hybridization scheme is proposed with electromagnetic transduction to improve the power density of piezoelectric energy harvester (PEH) in this paper. Based on the basic cantilever piezoelectric energy harvester (BC-PEH) composed of a mass block, a piezoelectric patch, and a cantilever beam, we replaced the mass block by a magnet array and added a coil array to form the hybrid energy harvester. To enhance the output power of the electromagnetic energy harvester (EMEH), we utilized an alternating magnet array. Then, to compare the power density of the hybrid harvester and BC-PEH, the experiments of output power were conducted. According to the experimental results, the power densities of the hybrid harvester and BC-PEH are, respectively, 3.53 mW/cm3 and 5.14 μW/cm3 under the conditions of 18.6 Hz and 0.3 g. Therefore, the power density of the hybrid harvester is 686 times as high as that of the BC-PEH, which verified the power density improvement of PEH via a hybridization scheme with EMEH. Additionally, the hybrid harvester exhibits better performance for charging capacitors, such as charging a 2.2 mF capacitor to 8 V within 17 s. It is of great significance to further develop self-powered devices.


Author(s):  
Guangya Ding ◽  
Hongjun Luo ◽  
Jun Wang ◽  
Guohui Yuan

A novel lever piezoelectric energy harvester (LPEH) was designed for installation in an actual roadway for energy harvesting. The model incorporates a lever module that amplifies the applied traffic load and transmits it to the piezoelectric ceramic. To observe the piezoelectric growth benefits of the optimized LPEH structure, the output characteristics and durability of two energy harvesters, the LPEH and a piezoelectric energy harvester (PEH) without a lever, were measured and compared by carrying out piezoelectric performance tests and traffic model experiments. Under the same loading condition, the open circuit voltages of the LPEH and PEH were 20.6 and 11.7 V, respectively, which represents a 76% voltage increase for the LPEH compared to the PEH. The output power of the LPEH was 21.51 mW at the optimal load, which was three times higher than that of the PEH (7.45 mW). The output power was linearly dependent on frequency and load, implying the potential application of the module as a self-powered speed sensor. When tested during 300,000 loading cycles, the LPEH still exhibited stable structural performance and durability.


Sign in / Sign up

Export Citation Format

Share Document