scholarly journals A Novel IMU Extrinsic Calibration Method for Mass Production Land Vehicles

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 7
Author(s):  
Vicent Rodrigo Marco ◽  
Jens Kalkkuhl ◽  
Jörg Raisch ◽  
Thomas Seel

Multi-modal sensor fusion has become ubiquitous in the field of vehicle motion estimation. Achieving a consistent sensor fusion in such a set-up demands the precise knowledge of the misalignments between the coordinate systems in which the different information sources are expressed. In ego-motion estimation, even sub-degree misalignment errors lead to serious performance degradation. The present work addresses the extrinsic calibration of a land vehicle equipped with standard production car sensors and an automotive-grade inertial measurement unit (IMU). Specifically, the article presents a method for the estimation of the misalignment between the IMU and vehicle coordinate systems, while considering the IMU biases. The estimation problem is treated as a joint state and parameter estimation problem, and solved using an adaptive estimator that relies on the IMU measurements, a dynamic single-track model as well as the suspension and odometry systems. Additionally, we show that the validity of the misalignment estimates can be assessed by identifying the misalignment between a high-precision INS/GNSS and the IMU and vehicle coordinate systems. The effectiveness of the proposed calibration procedure is demonstrated using real sensor data. The results show that estimation accuracies below 0.1 degrees can be achieved in spite of moderate variations in the manoeuvre execution.

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 46 ◽  
Author(s):  
N. Koksal ◽  
M. Jalalmaab ◽  
B. Fidan

In this paper, an infinite-horizon adaptive linear quadratic tracking (ALQT) control scheme is designed for optimal attitude tracking of a quadrotor unmanned aerial vehicle (UAV). The proposed control scheme is experimentally validated in the presence of real-world uncertainties in quadrotor system parameters and sensor measurement. The designed control scheme guarantees asymptotic stability of the close-loop system with the help of complete controllability of the attitude dynamics in applying optimal control signals. To achieve robustness against parametric uncertainties, the optimal tracking solution is combined with an online least squares based parameter identification scheme to estimate the instantaneous inertia of the quadrotor. Sensor measurement noises are also taken into account for the on-board Inertia Measurement Unit (IMU) sensors. To improve controller performance in the presence of sensor measurement noises, two sensor fusion techniques are employed, one based on Kalman filtering and the other based on complementary filtering. The ALQT controller performance is compared for the use of these two sensor fusion techniques, and it is concluded that the Kalman filter based approach provides less mean-square estimation error, better attitude estimation, and better attitude control performance.


2019 ◽  
Vol 9 (20) ◽  
pp. 4379 ◽  
Author(s):  
Alwin Poulose ◽  
Jihun Kim ◽  
Dong Seog Han

Sensor fusion frameworks for indoor localization are developed with the specific goal of reducing positioning errors. Although many conventional localization frameworks without fusion have been improved to reduce positioning error, sensor fusion frameworks generally provide a further improvement in positioning accuracy. In this paper, we propose a sensor fusion framework for indoor localization using the smartphone inertial measurement unit (IMU) sensor data and Wi-Fi received signal strength indication (RSSI) measurements. The proposed sensor fusion framework uses location fingerprinting and trilateration for Wi-Fi positioning. Additionally, a pedestrian dead reckoning (PDR) algorithm is used for position estimation in indoor scenarios. The proposed framework achieves a maximum of 1.17 m localization error for the rectangular motion of a pedestrian and a maximum of 0.44 m localization error for linear motion.


2018 ◽  
Vol 10 (8) ◽  
pp. 1176 ◽  
Author(s):  
Shoubin Chen ◽  
Jingbin Liu ◽  
Teng Wu ◽  
Wenchao Huang ◽  
Keke Liu ◽  
...  

In the fields of autonomous vehicles, virtual reality and three-dimensional (3D) reconstruction, 2D laser rangefinders have been widely employed for different purposes, such as localization, mapping, and simultaneous location and mapping. However, the extrinsic calibration of multiple 2D laser rangefinders is a fundamental prerequisite for guaranteeing their performance. In contrast to existing calibration methods that rely on manual procedures or suffer from low accuracy, an automatic and high-accuracy solution is proposed in this paper for the extrinsic calibration of 2D laser rangefinders. In the proposed method, a mobile sphere is used as a calibration target, thereby allowing the automatic extrapolation of a spherical center and the automatic matching of corresponding points. Based on the error analysis, a matching machine of corresponding points with a low error is established with the restriction constraint of the scan circle radius, thereby achieving the goal of high-accuracy calibration. Experiments using the Hokuyo UTM-30LX sensor show that the method can increase the extrinsic orientation accuracy to a sensor intrinsic accuracy of 10 mm without requiring manual measurements or manual correspondence among sensor data. Therefore, the calibration method in this paper is automatic, highly accurate, and highly effective, and it meets the requirements of practical applications.


2021 ◽  
Vol 4 (1) ◽  
pp. 3
Author(s):  
Parag Narkhede ◽  
Rahee Walambe ◽  
Shruti Mandaokar ◽  
Pulkit Chandel ◽  
Ketan Kotecha ◽  
...  

With the rapid industrialization and technological advancements, innovative engineering technologies which are cost effective, faster and easier to implement are essential. One such area of concern is the rising number of accidents happening due to gas leaks at coal mines, chemical industries, home appliances etc. In this paper we propose a novel approach to detect and identify the gaseous emissions using the multimodal AI fusion techniques. Most of the gases and their fumes are colorless, odorless, and tasteless, thereby challenging our normal human senses. Sensing based on a single sensor may not be accurate, and sensor fusion is essential for robust and reliable detection in several real-world applications. We manually collected 6400 gas samples (1600 samples per class for four classes) using two specific sensors: the 7-semiconductor gas sensors array, and a thermal camera. The early fusion method of multimodal AI, is applied The network architecture consists of a feature extraction module for individual modality, which is then fused using a merged layer followed by a dense layer, which provides a single output for identifying the gas. We obtained the testing accuracy of 96% (for fused model) as opposed to individual model accuracies of 82% (based on Gas Sensor data using LSTM) and 93% (based on thermal images data using CNN model). Results demonstrate that the fusion of multiple sensors and modalities outperforms the outcome of a single sensor.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2673
Author(s):  
Weibo Huang ◽  
Weiwei Wan ◽  
Hong Liu

The online system state initialization and simultaneous spatial-temporal calibration are critical for monocular Visual-Inertial Odometry (VIO) since these parameters are either not well provided or even unknown. Although impressive performance has been achieved, most of the existing methods are designed for filter-based VIOs. For the optimization-based VIOs, there is not much online spatial-temporal calibration method in the literature. In this paper, we propose an optimization-based online initialization and spatial-temporal calibration method for VIO. The method does not need any prior knowledge about spatial and temporal configurations. It estimates the initial states of metric-scale, velocity, gravity, Inertial Measurement Unit (IMU) biases, and calibrates the coordinate transformation and time offsets between the camera and IMU sensors. The work routine of the method is as follows. First, it uses a time offset model and two short-term motion interpolation algorithms to align and interpolate the camera and IMU measurement data. Then, the aligned and interpolated results are sent to an incremental estimator to estimate the initial states and the spatial–temporal parameters. After that, a bundle adjustment is additionally included to improve the accuracy of the estimated results. Experiments using both synthetic and public datasets are performed to examine the performance of the proposed method. The results show that both the initial states and the spatial-temporal parameters can be well estimated. The method outperforms other contemporary methods used for comparison.


2013 ◽  
Vol 662 ◽  
pp. 717-720 ◽  
Author(s):  
Zhen Yu Zheng ◽  
Yan Bin Gao ◽  
Kun Peng He

As an inertial sensors assembly, the FOG inertial measurement unit (FIMU) must be calibrated before being used. The paper presents a one-time systematic IMU calibration method only using two-axis low precision turntable. First, the detail error model of inertial sensors using defined body frame is established. Then, only velocity taken as observation, system 33 state equation is established including the lever arm effects and nonlinear terms of scale factor error. The turntable experiments verify that the method can identify all the error coefficients of FIMU on low-precision two-axis turntable, after calibration the accuracy of navigation is improved.


2014 ◽  
Vol 607 ◽  
pp. 791-794 ◽  
Author(s):  
Wei Kang Tey ◽  
Che Fai Yeong ◽  
Yip Loon Seow ◽  
Eileen Lee Ming Su ◽  
Swee Ho Tang

Omnidirectional mobile robot has gained popularity among researchers. However, omnidirectional mobile robot is rarely been applied in industry field especially in the factory which is relatively more dynamic than normal research setting condition. Hence, it is very important to have a stable yet reliable feedback system to allow a more efficient and better performance controller on the robot. In order to ensure the reliability of the robot, many of the researchers use high cost solution in the feedback of the robot. For example, there are researchers use global camera as feedback. This solution has increases the cost of the robot setup fee to a relatively high amount. The setup system is also hard to modify and lack of flexibility. In this paper, a novel sensor fusion technique is proposed and the result is discussed.


Sign in / Sign up

Export Citation Format

Share Document