scholarly journals Adaptive Linear Quadratic Attitude Tracking Control of a Quadrotor UAV Based on IMU Sensor Data Fusion

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 46 ◽  
Author(s):  
N. Koksal ◽  
M. Jalalmaab ◽  
B. Fidan

In this paper, an infinite-horizon adaptive linear quadratic tracking (ALQT) control scheme is designed for optimal attitude tracking of a quadrotor unmanned aerial vehicle (UAV). The proposed control scheme is experimentally validated in the presence of real-world uncertainties in quadrotor system parameters and sensor measurement. The designed control scheme guarantees asymptotic stability of the close-loop system with the help of complete controllability of the attitude dynamics in applying optimal control signals. To achieve robustness against parametric uncertainties, the optimal tracking solution is combined with an online least squares based parameter identification scheme to estimate the instantaneous inertia of the quadrotor. Sensor measurement noises are also taken into account for the on-board Inertia Measurement Unit (IMU) sensors. To improve controller performance in the presence of sensor measurement noises, two sensor fusion techniques are employed, one based on Kalman filtering and the other based on complementary filtering. The ALQT controller performance is compared for the use of these two sensor fusion techniques, and it is concluded that the Kalman filter based approach provides less mean-square estimation error, better attitude estimation, and better attitude control performance.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 7
Author(s):  
Vicent Rodrigo Marco ◽  
Jens Kalkkuhl ◽  
Jörg Raisch ◽  
Thomas Seel

Multi-modal sensor fusion has become ubiquitous in the field of vehicle motion estimation. Achieving a consistent sensor fusion in such a set-up demands the precise knowledge of the misalignments between the coordinate systems in which the different information sources are expressed. In ego-motion estimation, even sub-degree misalignment errors lead to serious performance degradation. The present work addresses the extrinsic calibration of a land vehicle equipped with standard production car sensors and an automotive-grade inertial measurement unit (IMU). Specifically, the article presents a method for the estimation of the misalignment between the IMU and vehicle coordinate systems, while considering the IMU biases. The estimation problem is treated as a joint state and parameter estimation problem, and solved using an adaptive estimator that relies on the IMU measurements, a dynamic single-track model as well as the suspension and odometry systems. Additionally, we show that the validity of the misalignment estimates can be assessed by identifying the misalignment between a high-precision INS/GNSS and the IMU and vehicle coordinate systems. The effectiveness of the proposed calibration procedure is demonstrated using real sensor data. The results show that estimation accuracies below 0.1 degrees can be achieved in spite of moderate variations in the manoeuvre execution.


2019 ◽  
Vol 9 (20) ◽  
pp. 4379 ◽  
Author(s):  
Alwin Poulose ◽  
Jihun Kim ◽  
Dong Seog Han

Sensor fusion frameworks for indoor localization are developed with the specific goal of reducing positioning errors. Although many conventional localization frameworks without fusion have been improved to reduce positioning error, sensor fusion frameworks generally provide a further improvement in positioning accuracy. In this paper, we propose a sensor fusion framework for indoor localization using the smartphone inertial measurement unit (IMU) sensor data and Wi-Fi received signal strength indication (RSSI) measurements. The proposed sensor fusion framework uses location fingerprinting and trilateration for Wi-Fi positioning. Additionally, a pedestrian dead reckoning (PDR) algorithm is used for position estimation in indoor scenarios. The proposed framework achieves a maximum of 1.17 m localization error for the rectangular motion of a pedestrian and a maximum of 0.44 m localization error for linear motion.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Tianpeng Huang ◽  
Deqing Huang ◽  
Zhikai Wang ◽  
Awais Shah

In this paper, a robust adaptive sliding mode control scheme is developed for attitude and altitude tracking of a quadrotor unmanned aerial vehicle (UAV) system under the simultaneous effect of parametric uncertainties and consistent external disturbance. The underactuated dynamic model of the quadrotor UAV is first built via the Newton–Euler formalism. Considering the nonlinear and strongly coupled characteristics of the quadrotor, the controller is then designed using a sliding mode approach. Meanwhile, additional adaptive laws are proposed to further improve the robustness of the proposed control scheme against the parametric uncertainties of the system. It is proven that the control laws can eliminate the altitude and attitude tracking errors, which are guaranteed to converge to zero asymptotically, even under a strong external disturbance. Finally, numerical simulation and experimental tests are performed, respectively, to verify the effectiveness and robustness of the proposed controller, where its superiority to linear quadratic control and active disturbance rejection control has been demonstrated clearly.


2021 ◽  
Vol 4 (1) ◽  
pp. 3
Author(s):  
Parag Narkhede ◽  
Rahee Walambe ◽  
Shruti Mandaokar ◽  
Pulkit Chandel ◽  
Ketan Kotecha ◽  
...  

With the rapid industrialization and technological advancements, innovative engineering technologies which are cost effective, faster and easier to implement are essential. One such area of concern is the rising number of accidents happening due to gas leaks at coal mines, chemical industries, home appliances etc. In this paper we propose a novel approach to detect and identify the gaseous emissions using the multimodal AI fusion techniques. Most of the gases and their fumes are colorless, odorless, and tasteless, thereby challenging our normal human senses. Sensing based on a single sensor may not be accurate, and sensor fusion is essential for robust and reliable detection in several real-world applications. We manually collected 6400 gas samples (1600 samples per class for four classes) using two specific sensors: the 7-semiconductor gas sensors array, and a thermal camera. The early fusion method of multimodal AI, is applied The network architecture consists of a feature extraction module for individual modality, which is then fused using a merged layer followed by a dense layer, which provides a single output for identifying the gas. We obtained the testing accuracy of 96% (for fused model) as opposed to individual model accuracies of 82% (based on Gas Sensor data using LSTM) and 93% (based on thermal images data using CNN model). Results demonstrate that the fusion of multiple sensors and modalities outperforms the outcome of a single sensor.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 137
Author(s):  
Vladimir Turetsky

Two inverse ill-posed problems are considered. The first problem is an input restoration of a linear system. The second one is a restoration of time-dependent coefficients of a linear ordinary differential equation. Both problems are reformulated as auxiliary optimal control problems with regularizing cost functional. For the coefficients restoration problem, two control models are proposed. In the first model, the control coefficients are approximated by the output and the estimates of its derivatives. This model yields an approximating linear-quadratic optimal control problem having a known explicit solution. The derivatives are also obtained as auxiliary linear-quadratic tracking controls. The second control model is accurate and leads to a bilinear-quadratic optimal control problem. The latter is tackled in two ways: by an iterative procedure and by a feedback linearization. Simulation results show that a bilinear model provides more accurate coefficients estimates.


Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


2014 ◽  
Vol 607 ◽  
pp. 791-794 ◽  
Author(s):  
Wei Kang Tey ◽  
Che Fai Yeong ◽  
Yip Loon Seow ◽  
Eileen Lee Ming Su ◽  
Swee Ho Tang

Omnidirectional mobile robot has gained popularity among researchers. However, omnidirectional mobile robot is rarely been applied in industry field especially in the factory which is relatively more dynamic than normal research setting condition. Hence, it is very important to have a stable yet reliable feedback system to allow a more efficient and better performance controller on the robot. In order to ensure the reliability of the robot, many of the researchers use high cost solution in the feedback of the robot. For example, there are researchers use global camera as feedback. This solution has increases the cost of the robot setup fee to a relatively high amount. The setup system is also hard to modify and lack of flexibility. In this paper, a novel sensor fusion technique is proposed and the result is discussed.


Sign in / Sign up

Export Citation Format

Share Document