scholarly journals Biosensors Based on Isothermal DNA Amplification for Bacterial Detection in Food Safety and Environmental Monitoring

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 602
Author(s):  
Sandra Leonardo ◽  
Anna Toldrà ◽  
Mònica Campàs

The easy and rapid spread of bacterial contamination and the risk it poses to human health makes evident the need for analytical methods alternative to conventional time-consuming laboratory-based techniques for bacterial detection. To tackle this demand, biosensors based on isothermal DNA amplification methods have emerged, which avoid the need for thermal cycling, thus facilitating their integration into small and low-cost devices for in situ monitoring. This review focuses on the breakthroughs made on biosensors based on isothermal amplification methods for the detection of bacteria in the field of food safety and environmental monitoring. Optical and electrochemical biosensors based on loop mediated isothermal amplification (LAMP), rolling circle amplification (RCA), recombinase polymerase amplification (RPA), helicase dependent amplification (HDA), strand displacement amplification (SDA), and isothermal strand displacement polymerisation (ISDPR) are described, and an overview of their current advantages and limitations is provided. Although further efforts are required to harness the potential of these emerging analytical techniques, the coalescence of the different isothermal amplification techniques with the wide variety of biosensing detection strategies provides multiple possibilities for the efficient detection of bacteria far beyond the laboratory bench.

2017 ◽  
Vol 184 (11) ◽  
pp. 4359-4365 ◽  
Author(s):  
Yunlei Zhou ◽  
Bingchen Li ◽  
Minghui Wang ◽  
Jun Wang ◽  
Huanshun Yin ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11851
Author(s):  
Takema Hasegawa ◽  
Diana Hapsari ◽  
Hitoshi Iwahashi

The hybrid method upon combining rolling circle amplification and loop-mediated isothermal amplification (RCA-LAMP) was developed to quantify very small amount of different type of RNAs, such as miRNAs. RCA-LAMP can help detect short sequences through padlock probe (PLP) circularization and exhibit powerful DNA amplification. However, one of the factors that determines the detection limit of RCA-LAMP is non-specific amplification. In this study, we improved the accuracy of RCA-LAMP through applying RNase H-dependent PCR (rhPCR) technology. In this method, the non-specific amplification was suppressed by using the rh primer, which is designed through blocking the modification at the 3′end to stop DNA polymerase reaction and replacing the 6th DNA molecule from the end with RNA using RNase H2 enzyme. Traditional RCA-LAMP amplified the non-specific amplicons from linear PLP without a targeting reaction, while RCA-LAMP with rh primer and RNase H2 suppressed the non-specific amplification. Conversely, we identified the risk posed upon conducting PLP cyclization reaction using Splint R ligase in the RNA-targeting step that occurred even in the RNA-negative condition, which is another factor determining the detection limit of RCA-LAMP. Therefore, this study contributes in improving the accuracy of RNA quantification using RCA-LAMP.


Biomics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 469-474
Author(s):  
A.R. Gilvanov ◽  
A.R. Sakhabutdinova ◽  
R.R. Garafutdinov

The nucleic acids amplification is one of the key methods for molecular biology research and clinical diagnostics. The isothermal amplification methods, for example rolling circle amplification, are a good alternative for a widely spread polymerase chain reaction. Strand-displacement DNA polymerases are required for isothermal amplification. In this work, we studied the influence of temperature on the formation of specific and non-specific amplification products by 9°Nm, Vent exo-, Hemo KlenTaq DNA polymerases during rolling circle amplification. The temperature values for the most effective formation of non-specific products and specific concatemeric products were determined. The obtained data will allow the development of more specific isothermal amplification methods with DNA polymerases used.


The Analyst ◽  
2015 ◽  
Vol 140 (22) ◽  
pp. 7540-7549 ◽  
Author(s):  
Bhushan J. Toley ◽  
Isabela Covelli ◽  
Yevgeniy Belousov ◽  
Sujatha Ramachandran ◽  
Enos Kline ◽  
...  

A new rapid and sensitive method of isothermal DNA amplification and a simple kinetic model of this reaction network.


The Analyst ◽  
2021 ◽  
Author(s):  
Sidhartha Jain ◽  
David S. Dandy ◽  
Brian Geiss ◽  
Charles Henry

Sensitive, reliable and cost-effective detection of pathogens has wide ranging applications in clinical diagnostics and therapeutics, water and food safety, environmental monitoring, biosafety and epidemiology. Nucleic acid amplification tests (NAATs)...


Sign in / Sign up

Export Citation Format

Share Document