The influence of temperature on the multimeric products formation by strand-displacement DNA polymerases in the conditions of isothermal amplification

Biomics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 469-474
Author(s):  
A.R. Gilvanov ◽  
A.R. Sakhabutdinova ◽  
R.R. Garafutdinov

The nucleic acids amplification is one of the key methods for molecular biology research and clinical diagnostics. The isothermal amplification methods, for example rolling circle amplification, are a good alternative for a widely spread polymerase chain reaction. Strand-displacement DNA polymerases are required for isothermal amplification. In this work, we studied the influence of temperature on the formation of specific and non-specific amplification products by 9°Nm, Vent exo-, Hemo KlenTaq DNA polymerases during rolling circle amplification. The temperature values for the most effective formation of non-specific products and specific concatemeric products were determined. The obtained data will allow the development of more specific isothermal amplification methods with DNA polymerases used.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11851
Author(s):  
Takema Hasegawa ◽  
Diana Hapsari ◽  
Hitoshi Iwahashi

The hybrid method upon combining rolling circle amplification and loop-mediated isothermal amplification (RCA-LAMP) was developed to quantify very small amount of different type of RNAs, such as miRNAs. RCA-LAMP can help detect short sequences through padlock probe (PLP) circularization and exhibit powerful DNA amplification. However, one of the factors that determines the detection limit of RCA-LAMP is non-specific amplification. In this study, we improved the accuracy of RCA-LAMP through applying RNase H-dependent PCR (rhPCR) technology. In this method, the non-specific amplification was suppressed by using the rh primer, which is designed through blocking the modification at the 3′end to stop DNA polymerase reaction and replacing the 6th DNA molecule from the end with RNA using RNase H2 enzyme. Traditional RCA-LAMP amplified the non-specific amplicons from linear PLP without a targeting reaction, while RCA-LAMP with rh primer and RNase H2 suppressed the non-specific amplification. Conversely, we identified the risk posed upon conducting PLP cyclization reaction using Splint R ligase in the RNA-targeting step that occurred even in the RNA-negative condition, which is another factor determining the detection limit of RCA-LAMP. Therefore, this study contributes in improving the accuracy of RNA quantification using RCA-LAMP.


2017 ◽  
Author(s):  
Bo Tian ◽  
Peter Svedlindh ◽  
Mattias Strömberg ◽  
Erik Wetterskog

In this work, we demonstrate for the first time, a ferromagnetic resonance (FMR) based homogeneous and volumetric biosensor for magnetic label detection. Two different isothermal amplification methods, <i>i.e.</i>, rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) are adopted and combined with a standard electron paramagnetic resonance (EPR) spectrometer for FMR biosensing. For RCA-based FMR biosensor, binding of RCA products of a synthetic Vibrio cholerae target DNA sequence gives rise to the formation of aggregates of magnetic nanoparticles. Immobilization of nanoparticles within the aggregates leads to a decrease of the net anisotropy of the system and a concomitant increase of the resonance field. A limit of detection of 1 pM is obtained with an average coefficient of variation of 0.16%, which is superior to the performance of other reported RCA-based magnetic biosensors. For LAMP-based sensing, a synthetic Zika virus target oligonucleotide is amplified and detected in 20% serum samples. Immobilization of magnetic nanoparticles is induced by their co-precipitation with Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> (a by-product of LAMP) and provides a detection sensitivity of 100 aM. The fast measurement, high sensitivity and miniaturization potential of the proposed FMR biosensing technology makes it a promising candidate for designing future point-of-care devices.<br>


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 602
Author(s):  
Sandra Leonardo ◽  
Anna Toldrà ◽  
Mònica Campàs

The easy and rapid spread of bacterial contamination and the risk it poses to human health makes evident the need for analytical methods alternative to conventional time-consuming laboratory-based techniques for bacterial detection. To tackle this demand, biosensors based on isothermal DNA amplification methods have emerged, which avoid the need for thermal cycling, thus facilitating their integration into small and low-cost devices for in situ monitoring. This review focuses on the breakthroughs made on biosensors based on isothermal amplification methods for the detection of bacteria in the field of food safety and environmental monitoring. Optical and electrochemical biosensors based on loop mediated isothermal amplification (LAMP), rolling circle amplification (RCA), recombinase polymerase amplification (RPA), helicase dependent amplification (HDA), strand displacement amplification (SDA), and isothermal strand displacement polymerisation (ISDPR) are described, and an overview of their current advantages and limitations is provided. Although further efforts are required to harness the potential of these emerging analytical techniques, the coalescence of the different isothermal amplification techniques with the wide variety of biosensing detection strategies provides multiple possibilities for the efficient detection of bacteria far beyond the laboratory bench.


2017 ◽  
Vol 184 (11) ◽  
pp. 4359-4365 ◽  
Author(s):  
Yunlei Zhou ◽  
Bingchen Li ◽  
Minghui Wang ◽  
Jun Wang ◽  
Huanshun Yin ◽  
...  

2021 ◽  
Author(s):  
Vandana Kuttappan Nair ◽  
Chandrika Sharma ◽  
Mrittika Sengupta ◽  
Souradyuti Ghosh

<b>Layman Summary: </b>Rolling circle amplification (RCA) is a popular and extensively used bioanalytical tool. Like any nucleic acid amplifications, non-specific amplification may occur in it and risk generating false positive readouts. The work described in the manuscript investigates non-specific amplification in RCA as a function of ligation and exonuclease digestion assays during the synthesis of circular DNA. In particular, it investigates and compares the role of three different ligation techniques, namely splint-padlock ligation, cohesive end (sticky end ligation), and self-annealing ligation. In addition, it also probes the role of single exonuclease vs dual exonuclease digestions. We employed real time fluorescence to quantify the effect of these factors. Finally, our work hypothesizes the possible origins of non-specific amplification in RCA.


2018 ◽  
Vol 9 (18) ◽  
pp. 4258-4267 ◽  
Author(s):  
Juan Hu ◽  
Ming-hao Liu ◽  
Chun-yang Zhang

The integration of quantum dot-based fluorescence resonance energy transfer with rolling circle amplification enables simultaneous sensitive detection of multiple microRNAs.


The Analyst ◽  
2020 ◽  
Vol 145 (24) ◽  
pp. 8002-8007
Author(s):  
Hyobeen Lee ◽  
Dong-Min Kim ◽  
Dong-Eun Kim

Label-free fluorometric detection of influenza viral RNA by strand displacement coupled with rolling circle amplification.


Sign in / Sign up

Export Citation Format

Share Document