scholarly journals Monitoring the Growth of a Microbubble Generated Photothermally onto an Optical Fiber by Means Fabry–Perot Interferometry

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 628
Author(s):  
J. Gabriel Ortega-Mendoza ◽  
Placido Zaca-Morán ◽  
J. Pablo Padilla-Martínez ◽  
Josué E. Muñoz-Pérez ◽  
José Luis Cruz ◽  
...  

In the present paper, we show the experimental measurement of the growth of a microbubble created on the tip of a single mode optical fiber, in which zinc nanoparticles were photodeposited on its core by using a single laser source to carry out both the generation of the microbubble by photothermal effect and the monitoring of the microbubble diameter. The photodeposition technique, as well as the formation of the microbubble, was carried out by using a single-mode pigtailed laser diode with emission at a wavelength of 658 nm. The microbubble’s growth was analyzed in the time domain by the analysis of the Fabry–Perot cavity, whose diameter was calculated with the number of interference fringes visualized in an oscilloscope. The results obtained with this technique were compared with images obtained from a CCD camera, in order to verify the diameter of the microbubble. Therefore, by counting the interference fringes, it was possible to quantify the temporal evolution of the microbubble. As a practical demonstration, we proposed a vibrometer sensor using microbubbles with sizes of 83 and 175 µm as a Fabry–Perot cavity; through the time period of a full oscillation cycle of an interferogram observed in the oscilloscope, it was possible to know the frequency vibration (500 and 1500 Hz) for a cuvette where the microbubble was created.

2012 ◽  
Vol 19 (2) ◽  
pp. 64-70 ◽  
Author(s):  
Hisham Kadhum Hisham ◽  
Ahmad Fauzi Abas ◽  
Ghafour Amouzad Mahdiraji ◽  
Mohd Adzir Mahdi ◽  
Ahmad Shukri Muhammad Noor

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 306 ◽  
Author(s):  
Paulina Listewnik ◽  
Marzena Hirsch ◽  
Przemysław Struk ◽  
Matthieu Weber ◽  
Mikhael Bechelany ◽  
...  

We report the fabrication of a novel fiber-optic sensor device, based on the use of a microsphere conformally coated with a thin layer of zinc oxide (ZnO) by atomic layer deposition (ALD), and its use as a refractive index sensor. The microsphere was prepared on the tip of a single-mode optical fiber, on which a conformal ZnO thin film of 200 nm was deposited using an ALD process based on diethyl zinc (DEZ) and water at 100 °C. The modified fiber-optic microsphere was examined using scanning electron microscopy and Raman spectroscopy. Theoretical modeling has been carried out to assess the structure performance, and the performed experimental measurements carried out confirmed the enhanced sensing abilities when the microsphere was coated with a ZnO layer. The fabricated refractive index sensor was operating in a reflective mode of a Fabry–Pérot configuration, using a low coherent measurement system. The application of the ALD ZnO coating enabled for a better measurement of the refractive index of samples in the range of the refractive index allowed by the optical fiber. The proof-of-concept results presented in this work open prospects for the sensing community and will promote the use of fiber-optic sensing technologies.


Photonics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 109
Author(s):  
Nespereira ◽  
Coelho ◽  
Rebordão

In-line Fabry–Perot cavities manufactured by a new technique using electric arc fusion of NIR laser microdrilled optical fiber flat tips were studied herein for refractive index sensing. Sensors were produced by creating an initial hole on the tip of a standard single-mode telecommunication optical fiber using a Q-switched Nd:YAG laser. Laser ablation and plasma formation processes created 5 to 10 micron cavities. Then, a standard splicing machine was used to fuse the microdrilled fiber with another one, thus creating cavities with lengths around 100 micrometers. This length has been proven to be necessary to obtain an interferometric signal with good fringe visibility when illuminating it in the C-band. Then, the sensing tip of the fiber, with the resulting air cavity, was submitted to several cleaves to enhance the signal and, therefore, its response as a sensor, with final lengths between tens of centimeters for the longest and hundreds of microns for the shortest. The experimental results were analyzed via two signal analysis techniques, fringe visibility and fast Fourier transform, for comparison purposes. In absolute values, the obtained sensitivities varied between 0.31 nm−1/RIU and about 8 nm−1/RIU using the latter method and between about 34 dB/RIU and 54 dB/RIU when analyzing the fringe visibility.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 806
Author(s):  
Ning Wang ◽  
Wenhao Tian ◽  
Haosheng Zhang ◽  
Xiaodan Yu ◽  
Xiaolei Yin ◽  
...  

An easily fabricated Fabry-Perot optical fiber humidity sensor with high performance was presented by filling Graphene Quantum Dots (GQDs) into the Fabry-Perot resonator, which consists of two common single mode optical fibers. The relative humidity sensing performance was experimentally investigated by an interference spectrum drift between 11 %RH to 85 %RH. 0.567 nm/%RH sensitivity and 0.99917 linear correlation were found in experiments that showed high sensitivity, good and wide-range linear responding. Meanwhile, its good responding repeatability was demonstrated by two circle tests with increasing and decreasing relative humidity. For investigating the measurement influence caused by a temperature jitter, the temperature responding was experimentally investigated, which showed its linear responding with 0.033 nm/°C sensitivity. The results demonstrate the humidity sensitivity is greatly higher than the temperature sensitivity. The wavelength shift influence is 0.0198 nm with 0.6 °C max temperature jitter in the experiment, which can be ignored in humidity experiments. The fast-dynamic responses at typical humidity were demonstrated in experiments, with 5.5 s responding time and 8.5 s recovering time. The sensors with different cavity lengths were also investigated for their humidity response. All sensors gave good linear responding and high sensitivity. In addition, the relation curve between cavity length and response sensitivity also had good linearity. The combination of GQDs and single mode optical fibers showed easy fabrication and good performance for an optical fiber relative humidity sensor.


1993 ◽  
Vol 71 (1-2) ◽  
pp. 20-24 ◽  
Author(s):  
Jian-Luo Zhang ◽  
John W. Y. Lit

A theoretical study is presented of a figure-of-eight optical fiber resonator that has two single-mode couplers. The output intensities of the optical fiber resonator are investigated in terms of the coupling coefficients and losses. The finesse and contrast are discussed. Compared with a transversely coupled fiber Fabry–Perot resonator, this resonator has an all-fiber configuration, and is more easily realized. Compared with a direct-coupling fiber ring resonator, it offers reflected outputs that may be useful in some applications.


Sign in / Sign up

Export Citation Format

Share Document