scholarly journals Robust Filtering Techniques for RTK Positioning in Harsh Propagation Environments

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1250
Author(s):  
Daniel Medina ◽  
Haoqing Li ◽  
Jordi Vilà-Valls ◽  
Pau Closas

Global navigation satellite systems (GNSSs) play a key role in intelligent transportation systems such as autonomous driving or unmanned systems navigation. In such applications, it is fundamental to ensure a reliable precise positioning solution able to operate in harsh propagation conditions such as urban environments and under multipath and other disturbances. Exploiting carrier phase observations allows for precise positioning solutions at the complexity cost of resolving integer phase ambiguities, a procedure that is particularly affected by non-nominal conditions. This limits the applicability of conventional filtering techniques in challenging scenarios, and new robust solutions must be accounted for. This contribution deals with real-time kinematic (RTK) positioning and the design of robust filtering solutions for the associated mixed integer- and real-valued estimation problem. Families of Kalman filter (KF) approaches based on robust statistics and variational inference are explored, such as the generalized M-based KF or the variational-based KF, aiming to mitigate the impact of outliers or non-nominal measurement behaviors. The performance assessment under harsh propagation conditions is realized using a simulated scenario and real data from a measurement campaign. The proposed robust filtering solutions are shown to offer excellent resilience against outlying observations, with the variational-based KF showcasing the overall best performance in terms of Gaussian efficiency and robustness.

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3586 ◽  
Author(s):  
Lorenzo Ortega ◽  
Daniel Medina ◽  
Jordi Vilà-Valls ◽  
François Vincent ◽  
Eric Chaumette

Global Navigation Satellite Systems (GNSS) are the main source of position, navigation, and timing (PNT) information and will be a key player in the next-generation intelligent transportation systems and safety-critical applications, but several limitations need to be overcome to meet the stringent performance requirements. One of the open issues is how to provide precise PNT solutions in harsh propagation environments. Under nominal conditions, the former is typically achieved by exploiting carrier phase information through precise positioning techniques, but these methods are very sensitive to the quality of phase observables. Another option that is gaining interest in the scientific community is the use of large bandwidth signals, which allow obtaining a better baseband resolution, and therefore more precise code-based observables. Two options may be considered: (i) high-order binary offset carrier (HO-BOC) modulations or (ii) the concept of GNSS meta-signals. In this contribution, we assess the time-delay and phase maximum likelihood (ML) estimation performance limits of such signals, together with the performance translation into the position domain, considering single point positioning (SPP) and RTK solutions, being an important missing point in the literature. A comprehensive discussion is provided on the estimators’ behavior, the corresponding ML threshold regions, the impact of good and bad satellite constellation geometries, and final conclusions on the best candidates, which may lead to precise solutions under harsh conditions. It is found that if the receiver is constrained by the receiver bandwidth, the best choices are the L1-M or E6-Public Regulated Service (PRS) signals. If the receiver is able to operate at 60 MHz, it is recommended to exploit the full-bandwidth Galileo E5 signal. In terms of robustness and performance, if the receiver can operate at 135 MHz, the best choice is to use the GNSS meta-signals E5 + E6 or B2 + B3, which provide the best overall performances regardless of the positioning method used, the satellite constellation geometry, or the propagation conditions.


2020 ◽  
Vol 12 (18) ◽  
pp. 2928
Author(s):  
Jan Mortier ◽  
Gaël Pagès ◽  
Jordi Vilà-Valls

Global Navigation Satellite Systems (GNSS) is the technology of choice for outdoor positioning purposes but has many limitations when used in safety-critical applications such Intelligent Transportation Systems (ITS) and Unmanned Autonomous Systems (UAS). Namely, its performance clearly degrades in harsh propagation conditions and is not reliable due to possible attacks or interference. Moreover, GNSS signals may not be available in the so-called GNSS-denied environments, such as deep urban canyons or indoors, and standard GNSS architectures do not provide the precision needed in ITS. Among the different alternatives, cellular signals (LTE/5G) may provide coverage in constrained urban environments and Ultra-Wideband (UWB) ranging is a promising solution to achieve high positioning accuracy. The key points impacting any time-of-arrival (TOA)-based navigation system are (i) the transmitters’ geometry, (ii) a perfectly known transmitters’ position, and (iii) the environment. In this contribution, we analyze the performance loss of alternative TOA-based navigation systems in real-life applications where we may have both transmitters’ position mismatch, harsh propagation environments, and GNSS-denied conditions. In addition, we propose new robust filtering methods able to cope with both effects up to a certain extent. Illustrative results in realistic scenarios are provided to support the discussion and show the performance improvement brought by the new methodologies with respect to the state-of-the-art.


2021 ◽  
Vol 13 (12) ◽  
pp. 306
Author(s):  
Ahmed Dirir ◽  
Henry Ignatious ◽  
Hesham Elsayed ◽  
Manzoor Khan ◽  
Mohammed Adib ◽  
...  

Object counting is an active research area that gained more attention in the past few years. In smart cities, vehicle counting plays a crucial role in urban planning and management of the Intelligent Transportation Systems (ITS). Several approaches have been proposed in the literature to address this problem. However, the resulting detection accuracy is still not adequate. This paper proposes an efficient approach that uses deep learning concepts and correlation filters for multi-object counting and tracking. The performance of the proposed system is evaluated using a dataset consisting of 16 videos with different features to examine the impact of object density, image quality, angle of view, and speed of motion towards system accuracy. Performance evaluation exhibits promising results in normal traffic scenarios and adverse weather conditions. Moreover, the proposed approach outperforms the performance of two recent approaches from the literature.


Author(s):  
Shinichiro Sega ◽  
Hirotoshi Iwasaki ◽  
Hironori Hiraishi ◽  
Fumio Mizoguchi

This paper explores applying qualitative reasoning to a driver’s mental state in real driving situations so as to develop a working load for intelligent transportation systems. The authors identify the cognitive state that determines whether a driver will be ready to operate a device in car navigation. In order to identify the driver’s cognitive state, the authors will measure eye movements during car-driving situations. Data can be acquired for the various actions of a car driver, in particular braking, acceleration, and steering angles from the experiment car. The authors constructed a driver cognitive mental load using the framework of qualitative reasoning. The response of the model was checked by qualitative simulation. The authors also verified the model using real data collected by driving an actual car. The results indicated that the model could represent the change in the cognitive mental load based on measurable data. This means that the framework of this paper will be useful for designing user interfaces for next-generation systems that actively employ user situations.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 791 ◽  
Author(s):  
Liviu-Adrian Hîrţan ◽  
Ciprian Dobre ◽  
Horacio González-Vélez

A disruptive technology often used in finance, Internet of Things (IoT) and healthcare, blockchain can reach consensus within a decentralised network—potentially composed of large amounts of unreliable nodes—and to permanently and irreversibly store data in a tamper-proof manner. In this paper, we present a reputation system for Intelligent Transportation Systems (ITS). It considers the users interested in traffic information as the main actors of the architecture. They securely share their data which are collectively validated by other users. Users can choose to employ either such crowd-sourced validated data or data generated by the system to travel between two locations. The data saved is reliable, based on the providers’ reputation and cannot be modified. We present results with a simulation for three cities: San Francisco, Rome and Beijing. We have demonstrated the impact of malicious attacks as the average speed decreased if erroneous information was stored in the blockchain as an implemented routing algorithm guides the honest cars on other free routes, and thus crowds other intersections.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Joilson Alves Junior ◽  
Emilio C. G. Wille

The vehicular ad hoc network (VANET) for intelligent transportation systems is an emerging concept to improve transportation security, reliability, and management. The network behavior can be totally different in topological aspects because of the mobility of vehicular nodes. The topology can be fully connected when the flow of vehicles is high and may have low connectivity or be invalid when the flow of vehicles is low or unbalanced. In big cities, the metropolitan buses that travel on exclusive lanes may be used to set up a metropolitan vehicular data network (backbone), raising the connectivity among the vehicles. Therefore, this paper proposes the implementation of a living mobile backbone, totally ad hoc (MOB-NET), which will provide infrastructure and raise the network connectivity. In order to show the viability of MOB-NET, statistical analyses were made with real data of express buses that travel through exclusive lanes, besides evaluations through simulations and analytic models. The statistic, analytic, and simulation results prove that the buses that travel through exclusive lanes can be used to build a communication network totally ad hoc and provide connectivity in more than 99% of the time, besides raising the delivery rate up to 95%.


2012 ◽  
Vol 8 (4) ◽  
pp. 467124 ◽  
Author(s):  
F. Barrero ◽  
S. L. Toral ◽  
M. Vargas ◽  
J. Becerra

The concept of Intelligent Transportation Systems (ITSs) has been recently introduced to define modern embedded systems with enhanced digital connectivity, combining people, vehicles, and public infrastructure. The smart transducer concept, on the other hand, has been established by the IEEE 1451 standard to simplify the scalability of networked electronic equipments. The synergy of both concepts will establish a new paradigm in the near future of the ITS area. The purpose of this paper is to analyze the integration of electronic equipments into intelligent road-traffic management systems by using the smart transducer concept. An automated video processing sensor for road-traffic monitoring applications is integrated into an ITS network as a case study. The impact of the IEEE 1451 standard in the development and performance of ITS equipments is analyzed through its application to this video-based system, commercialized under the name VisioWay.


Author(s):  
Bruno Pereira Santos ◽  
Luiz Filipe Menezes Vieira ◽  
Antonio Alfredo Ferreira Loureiro

This Ph.D. Thesis proposes new techniques for routing and mobility management for Internet of Things (IoT). In the future IoT, everyday mobile objects will probably be connected to the Internet. Currently, static IoT's devices have already been connected, but handle mobile devices suitably still being an open issue in IoT context. Then, solutions for routing mobility detection, handover, and mobility management are proposed through an algorithm that integrates Machine Learning (ML) and mobility metrics to figure out devices' mobility events, which we named Dribble. Also, an IPv6 hierarchical routing protocol named Mobile Matrix to boost efficient (memory and fault tolerance) end-to-end connectivity over mobility scenarios. The Thesis contributions are supported by numerous peer-reviewed publications in national and international conferences and journals included in ISI-JCR. Also, the applicability of this Thesis is evident by showing that our results overcome state-of-the-art in static and mobile scenarios, as well as, the impact of the proposed solutions is a step forward in at least two new research areas so-called Internet of Mobile Things (IoMT) and Social IoT, where devices move around and do social ties respectively. Moreover, during the Ph.D. degree, the author has contributed to different computer network fields rather than routing by publishing in areas like social networks, smart cities, intelligent transportation systems, software-defined networks, and parallel computing.


Author(s):  
João Peixoto ◽  
Adriano Moreira

The analysis of urban mobility has been attracting the interest of the research community recently. The research challenges in this domain are diverse and include data acquisition and representation, human movement modeling and the visualization of dynamic geo-referenced data. Some of the direct applications for these studies are urban planning, security, intelligent transportation systems and wireless networks optimization. One of the drivers for recent work in this area is the availability of large datasets representing many aspects of the urban dynamics. Quite often, the proposed approaches are highly dependent on the data type. However, the analysis of urban dynamics could benefit from the combined and simultaneous use of multiple sources of spatio-temporal data. This paper describes the definition of a set of basic concepts for the representation and processing of spatio-temporal data, sufficiently flexible to deal with various types of mobility data and to support multiple forms of processing and visualization of the urban mobility. For this purpose the authors define a set of concepts and describe how real data from heterogeneous sources is mapped into the proposed framework. Available results obtained by the integration of geometric and symbolic data reveal the adequacy of the proposed concepts, and uncover new possibilities for the fusion of heterogeneous datasets.


Sign in / Sign up

Export Citation Format

Share Document