scholarly journals Adaptive Reservation of Network Resources According to Video Classification Scenes

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1949
Author(s):  
Lukas Sevcik ◽  
Miroslav Voznak

Video quality evaluation needs a combined approach that includes subjective and objective metrics, testing, and monitoring of the network. This paper deals with the novel approach of mapping quality of service (QoS) to quality of experience (QoE) using QoE metrics to determine user satisfaction limits, and applying QoS tools to provide the minimum QoE expected by users. Our aim was to connect objective estimations of video quality with the subjective estimations. A comprehensive tool for the estimation of the subjective evaluation is proposed. This new idea is based on the evaluation and marking of video sequences using the sentinel flag derived from spatial information (SI) and temporal information (TI) in individual video frames. The authors of this paper created a video database for quality evaluation, and derived SI and TI from each video sequence for classifying the scenes. Video scenes from the database were evaluated by objective and subjective assessment. Based on the results, a new model for prediction of subjective quality is defined and presented in this paper. This quality is predicted using an artificial neural network based on the objective evaluation and the type of video sequences defined by qualitative parameters such as resolution, compression standard, and bitstream. Furthermore, the authors created an optimum mapping function to define the threshold for the variable bitrate setting based on the flag in the video, determining the type of scene in the proposed model. This function allows one to allocate a bitrate dynamically for a particular segment of the scene and maintains the desired quality. Our proposed model can help video service providers with the increasing the comfort of the end users. The variable bitstream ensures consistent video quality and customer satisfaction, while network resources are used effectively. The proposed model can also predict the appropriate bitrate based on the required quality of video sequences, defined using either objective or subjective assessment.

Author(s):  
Hasan F. Khazaal ◽  
Rawaa I. Farhan ◽  
Baraa I. Farhan ◽  
Haider Th. Salim ALRikabi ◽  
Tasos Dagiuklas ◽  
...  

     Streaming of video over wireless heterogeneous networks coping with the problem of packet loss which affects the perceived video quality. The service providers usually use the Peak Signal to Noise Ratio PSNR as a metric measure for the quality of their provided service. So they use the quality of service QoS of the network as a sign on the quality of their presented service. The QoS deal with the objective tests of the provided service, which mean the measure of PSNR of the presented objects. The presented objects may not get the satisfaction of the network users due to many factors although that the PSNR of the used service is enough for presenting the service. Recently the service providers use the Quality of Experience QoE term which deal with the subjective test of the presented object (i.e. the user satisfaction measure). In this paper we propose a new model to identify the importance or the significance of the role of the QoE assessment for the service providers. To verify our proposed model we did a referendum for 55 participants in order to assess their judgment on the quality of some presented videos. The results of the referendum match the consideration of the proposed model.           


2021 ◽  
Vol 25 (3) ◽  
pp. 571-587
Author(s):  
Jaroslav Frnda ◽  
Michal Pavlicko ◽  
Marek Durica ◽  
Lukas Sevcik ◽  
Miroslav Voznak ◽  
...  

This paper proposes a novel method for video quality evaluation based on machine learning technique. The current research deals with the correct interpretation of objective video quality evaluation (Quality of Service – QoS) in relation to subjective end-user perception (Quality of Experience – QoE), typically expressed by mean opinion score (MOS). Our method allows us to interconnect results obtained from video objective and subjective assessment methods in the form of a neural network (computing model inspired by biological neural networks). So far, no unified interpretation scale has been standardized for both approaches, therefore it is difficult to determine the level of end-user satisfaction obtained from the objective assessment. Thus, contribution of the proposed method lies in description of the way to create a hybrid metric that delivers fast and reliable subjective score of perceived video quality for internet television (IPTV) broadcasting companies.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2872
Author(s):  
Miroslav Uhrina ◽  
Anna Holesova ◽  
Juraj Bienik ◽  
Lukas Sevcik

This paper deals with the impact of content on the perceived video quality evaluated using the subjective Absolute Category Rating (ACR) method. The assessment was conducted on eight types of video sequences with diverse content obtained from the SJTU dataset. The sequences were encoded at 5 different constant bitrates in two widely video compression standards H.264/AVC and H.265/HEVC at Full HD and Ultra HD resolutions, which means 160 annotated video sequences were created. The length of Group of Pictures (GOP) was set to half the framerate value, as is typical for video intended for transmission over a noisy communication channel. The evaluation was performed in two laboratories: one situated at the University of Zilina, and the second at the VSB—Technical University in Ostrava. The results acquired in both laboratories reached/showed a high correlation. Notwithstanding the fact that the sequences with low Spatial Information (SI) and Temporal Information (TI) values reached better Mean Opinion Score (MOS) score than the sequences with higher SI and TI values, these two parameters are not sufficient for scene description, and this domain should be the subject of further research. The evaluation results led us to the conclusion that it is unnecessary to use the H.265/HEVC codec for compression of Full HD sequences and the compression efficiency of the H.265 codec by the Ultra HD resolution reaches the compression efficiency of both codecs by the Full HD resolution. This paper also includes the recommendations for minimum bitrate thresholds at which the video sequences at both resolutions retain good and fair subjectively perceived quality.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1843
Author(s):  
Jelena Vlaović ◽  
Snježana Rimac-Drlje ◽  
Drago Žagar

A standard called MPEG Dynamic Adaptive Streaming over HTTP (MPEG DASH) ensures the interoperability between different streaming services and the highest possible video quality in changing network conditions. The solutions described in the available literature that focus on video segmentation are mostly proprietary, use a high amount of computational power, lack the methodology, model notation, information needed for reproduction, or do not consider the spatial and temporal activity of video sequences. This paper presents a new model for selecting optimal parameters and number of representations for video encoding and segmentation, based on a measure of the spatial and temporal activity of the video content. The model was developed for the H.264 encoder, using Structural Similarity Index Measure (SSIM) objective metrics as well as Spatial Information (SI) and Temporal Information (TI) as measures of video spatial and temporal activity. The methodology that we used to develop the mathematical model is also presented in detail so that it can be applied to adapt the mathematical model to another type of an encoder or a set of encoding parameters. The efficiency of the segmentation made by the proposed model was tested using the Basic Adaptation algorithm (BAA) and Segment Aware Rate Adaptation (SARA) algorithm as well as two different network scenarios. In comparison to the segmentation available in the relevant literature, the segmentation based on the proposed model obtains better SSIM values in 92% of cases and subjective testing showed that it achieves better results in 83.3% of cases.


2021 ◽  
Vol 9 (1) ◽  
pp. 691-697
Author(s):  
N. Sugirtham, R. Sherine Jenny

Network applications demand quality of service for enhanced call quality and increased user satisfaction. Hence, implementing queuing discipline at switches and routers in a network will govern the way packets are buffered while waiting for transmission. Queuing disciplines like first-in first-out (FIFO) queuing, priority queuing (PQ), weighted-fair queuing (WFQ), custom queuing and modified weighted round robin are more prominently deployed in network applications. These queuing disciplines help to control and manage network resources by fixing priorities for specific types of data on the network. The paper aims to analyze the quality of service parameters for various real time applications like File transfer protocol(FTP), email, database, Voice over IP(VOIP), video and web browsing,etc., and helps to optimise the use of available network resources. Moreover the quality of the network is compared using different QoS parameters such as end-to-end delay, throughput, jitter and Mean Opinion Score (MOS). This paper focuses on various queuing disciplines with low and high network traffic.


Author(s):  
André F. Marquet ◽  
Jânio M. Monteiro ◽  
Nuno J. Martins ◽  
Mario S. Nunes

In legacy television services, user centric metrics have been used for more than twenty years to evaluate video quality. These subjective assessment metrics are usually obtained using a panel of human evaluators in standard defined methods to measure the impairments caused by a diversity of factors of the Human Visual System (HVS), constituting what is also called Quality of Experience (QoE) metrics. As video services move to IP networks, the supporting distribution platforms and the type of receiving terminals is getting more heterogeneous, when compared with classical video distributions. The flexibility introduced by these new architectures is, at the same time, enabling an increment of the transmitted video quality to higher definitions and is supporting the transmission of video to lower capability terminals, like mobile terminals. In IP Networks, while Quality of Service (QoS) metrics have been consistently used for evaluating the quality of a transmission and provide an objective way to measure the reliability of communication networks for various purposes, QoE metrics are emerging as a solution to address the limitations of conventional QoS measuring when evaluating quality from the service and user point of view. In terms of media, compressed video usually constitutes a very interdependent structure degrading in a non-graceful manner when exposed to Binary Erasure Channels (BEC), like the Internet or wireless networks. Accordingly, not only the type of encoder and its major encoding parameters (e.g. transmission rate, image definition or frame rate) contribute to the quality of a received video, but also QoS parameters are usually a cause for different types of decoding artifacts. As a result of this, several worldwide standard entities have been evaluating new metrics for the subjective assessment of video transmission over IP networks. In this chapter we are especially interested in explaining some of the best practices available to monitor, evaluate and assure good levels of QoE in packet oriented networks for rich media applications like high quality video streaming. For such applications, service requirements are relatively loose or difficult to quantify and therefore specific techniques have to be clearly understood and evaluated. By the mid of the chapter the reader should have understood why even networks with excellent QoS parameters might have QoE issues, as QoE is a systemic approach that does not relate solely to QoS but to the ensemble of components composing the communication system.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 585 ◽  
Author(s):  
Jaroslav Frnda ◽  
Jan Nedoma ◽  
Jan Vanus ◽  
Radek Martinek

The internet protocol television service (IPTV) has become a key product for internet service providers (ISP), offering several benefits to both ISP and end-users. Because packet networks based on internet protocol have not been prepared for time-sensitive services, such as voice or video, packet networks have had to adopt several mechanisms to secure minimal transmission standards in the form of data stream prioritization. There are two commonly used approaches for video quality assessment. The first approach needs an original source for comparison (full-reference objective metrics), and the second one requires observers for subjective evaluation of video quality. Both approaches are impractical in real-time transmission because it is difficult to transform an objective score into a subjective quality perception, and on the other hand, subjective tests are not able to be performed immediately. Since many countries worldwide put IPTV on the same level as other broadcasting systems (e.g., terrestrial, cable, or satellite), IPTV services are subject to regulation by the national regulation authority. This results in the need to prepare service qualitative criteria and monitoring tools capable of measuring end-user satisfaction levels. Our proposed model combines the principles of both assessment approaches, which results in an effective monitoring solution. Therefore, the main contribution of the created system is to offer a monitoring tool able to analyze the features extracted from the video sequence and transmission system and promptly translate their impact into a subjective point of view.


2018 ◽  
Vol 11 (2) ◽  
pp. 88-109
Author(s):  
Devki Nandan Jha ◽  
Deo Prakash Vidyarthi

Cloud computing is a technological advancement that provides services in the form of utility on a pay-per-use basis. As the cloud market is expanding, numerous service providers are joining the cloud platform with their services. This creates an indecision amongst the users to choose an appropriate service provider especially when the cloud provider provisions diverse type of virtual machines. The problem becomes more challenging when the user has different jobs requiring specific quality of service. To address the aforementioned problem, this article applies a hybrid heuristic using College Admission Problem and Analytical Hierarchical Process for stable matching of the users' job with the cloud's virtual machines. The case study depicts the effectiveness of the proposed model.


2020 ◽  
Vol 32 (3) ◽  
pp. 423-435 ◽  
Author(s):  
Ahmad Nazrul Hakimi Ibrahim ◽  
Muhamad Nazri Borhan ◽  
Nur Izzi Md. Yusoff ◽  
Amiruddin Ismail

While rail-based public transport is clearly a more advanced and preferable alternative to driving and a way of overcoming traffic congestion and pollution problems, the rate of uptake for rail travel has remained stagnant as a result of various well-known issues such as that commuters either use a more reliable and comfortable alternative to get from A to B and/or that they are not satisfied with the quality of service provided. This study examined the factor of user satisfaction regarding rail-based public transport with the aim of discovering precisely what factors have a significant effect on the user satisfaction and uptake of rail travel. This was approached using both the Delphi approach and a thorough review of the current literature, focusing on a total of nine possible factors affecting passenger satisfaction with rail travel availability of service, accessibility of service, ticket or pass, punctuality, clarity of information, quality of customer service, comfort, safety, and image. Also discussed were 29 extra possible attributes and several measures that were implemented in various countries to increase the service quality. It was concluded that this review will provide valuable information for policymakers, researchers and service providers in terms of specifying the service factors most worth investigating if the quality of this crucial means of transport is to be raised.


Author(s):  
Jelena Vlaović ◽  
Drago Žagar ◽  
Snježana Rimac-Drlje ◽  
Mario Vranješ

With the development of Video on Demand applications due to the availability of high-speed internet access, adaptive streaming algorithms have been developing and improving. The focus is on improving user’s Quality of Experience (QoE) and taking it into account as one of the parameters for the adaptation algorithm. Users often experience changing network conditions, so the goal is to ensure stable video playback with satisfying QoE level. Although subjective Video Quality Assessment (VQA) methods provide more accurate results regarding user’s QoE, objective VQA methods cost less and are less time-consuming. In this article, nine different objective VQA methods are compared on a large set of video sequences with various spatial and temporal activities. VQA methods used in this analysis are: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), MultiScale Structural Similarity Index (MS-SSIM), Video Quality Metric (VQM), Mean Sum of Differences (DELTA), Mean Sum of Absolute Differences (MSAD), Mean Squared Error (MSE), Netflix Video Multimethod Assessment Fusion (Netflix VMAF) and Visual Signal-to-Noise Ratio (VSNR). The video sequences used for testing purposes were encoded according to H.264/AVC with twelve different target coding bitrates, at three different spatial resolutions (resulting in a total of 190 sequences). In addition to objective quality assessment, subjective quality assessment was performed for these sequences. All results acquired by objective VQA methods have been compared with subjective Mean Opinion Score (MOS) results using Pearson Linear Correlation Coefficient (PLCC). Measurement results obtained on a large set of video sequences with different spatial resolutions show that VQA methods like SSIM and VQM correlate better with MOS results compared to PSNR, SSIM, VSNR, DELTA, MSE, VMAF and MSAD. However, the PLCC results for SSIM and VQM are too low (0.7799 and 0.7734, respectively), for the usage of these methods in streaming services instead of subjective testing. These results suggest that more efficient VQA methods should be developed to be used in streaming testing procedures as well as to support the video segmentation process. Furthermore, when comparing results obtained for different spatial resolutions, it can be concluded that the quality of video sequences encoded at lower spatial resolutions in cases of lower target coding bitrate is higher compared to the quality of video sequences encoded at higher spatial resolutions at the same target coding bitrate, particularly when video sequences with higher spatial and temporal information are used.


Sign in / Sign up

Export Citation Format

Share Document