scholarly journals Development of a Non-Linear Bi-Directional Vortex-Induced Piezoelectric Energy Harvester with Magnetic Interaction

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2299
Author(s):  
Wei-Jiun Su ◽  
Zong-Siang Wang

In this study, magnetic force is introduced to the design of a bi-directional U-shaped piezoelectric energy harvester for vortex-induced vibrations. The theoretical model of the beam structure is derived based on the Euler–Bernoulli beam theory. The vortex-induced vibration and the non-linear magnetic force are modeled according to the Rayleigh oscillator and the charge model, respectively. A prototype is fabricated and tested in two orthogonal directions under vortex-induced vibrations in a wind tunnel. Up and down wind-speed sweeps are carried out to investigate the non-linear responses of the harvester. The distance between the magnets and the length of the side beams are adjusted to examine the influence of the magnetic force on the lock-in region and voltage output of the harvester. Overall, the harvester shows strong non-linearity in the horizontal excitations. After adding magnets to the system, significant improvement of the lock-in region and the peak voltage is noticed in the horizontal mode under both up and down sweeps.

Author(s):  
Mahdi Derayatifar ◽  
Ramin Sedaghati ◽  
Sujatha Chandramohan ◽  
Muthukumaran Packirisamy ◽  
Rama Bhat

The aim of this embodiment is to present an analytical analysis of a functionally graded piezoelectric energy harvester consisting of a flexible functionally graded piezoelectric layers carrying magnetic mass at the free end. The magnetic tip mass is in interaction with a permanent magnet which is located at a distance from the top of the tip mass. The oscillation of the harvester happens via excitation of the base. Using Rayleigh’s beam theory and Hamilton’s principle and considering geometric nonlinearity, the coupled electromechanical governing equations have been developed. The nonlinear frequency response of the piezoelectric energy harvester beam has also been studied under base excitation. A parametric study has been carried out to investigate the effect of grading index and magnetic force on responses of both free vibration and induced excitation cases. The results were compared with those obtained using three-dimensional finite element model developed in COMSOL Multiphysics 5.5 commercial software and good agreement has been observed. The results from both the analytical method and simulation confirm that tuning the design parameters of grading index and magnetic gap to the optimal value results in a considerable change in the performance of the energy harvester.


Author(s):  
Amin Bibo ◽  
Abdessattar Abdelkefi ◽  
Mohammed F. Daqaq

This paper develops an experimentally validated model of a piezoelectric energy harvester under combined aeroelastic-galloping and base excitations. To that end, an energy harvester consisting of a thin piezoelectric cantilever beam subjected to vibratory base excitation is considered. To permit galloping excitation, a bluff body is rigidly attached at the free end such that a net aerodynamic lift is generated as the incoming airflow separates on both sides of the body giving rise to limit cycle oscillations when the flow velocity exceeds a critical value. A nonlinear electromechanical distributed-parameter model of the harvester under the combined excitation is derived using the energy approach and by adopting the nonlinear Euler-Bernoulli beam theory, linear constitutive relations for the piezoelectric transduction, and the quasi-steady assumption for the aerodynamic loading. The partial differential equations of the system are discretized and a reduced-order-model is obtained. The mathematical model is validated by conducting a series of experiments with different loading conditions represented by wind speed, base excitation amplitude, and excitation frequency around the primary resonance.


Author(s):  
Wei-Jiun Su ◽  
Hsuan-Chen Lu

In this study, a dual-beam piezoelectric energy harvester is proposed. This harvester consists of a main beam and an auxiliary beam with a pair of magnets attached to couple their motions. The potential energy of the system is modeled to understand the influence of the potential wells on the dynamics of the harvester. It is noted that the alignment of the magnets significantly influences the potential wells. A theoretical model of the harvester is developed based on the Euler-Bernoulli beam theory. Frequency sweeps are conducted experimentally and numerically to study the dynamics of the harvester. It is shown that the dual-beam harvester can exhibit hardening effect with different configurations of magnet alignments in frequency sweeps. The performance of the harvester can be improved with proper placement of the magnets.


Author(s):  
Saman Nezami ◽  
HyunJun Jung ◽  
Myung Kyun Sung ◽  
Soobum Lee

This paper presents mathematical modeling of an energy harvester (EH) for a wireless structure health monitoring (SHM) system in wind turbine blades. The harvester consists of a piezoelectric energy harvester (PEH) beam, a gravity-induced disk, and magnets attached to both the beam and the disk. An electromechanical model of the proposed EH is developed using the energy method with repelling magnetic force considered. The three coupled equations — the motion of the disk, the vibration of the beam, and the voltage output — are derived and solved using ODE45 in MATLAB software. The result showed the blade rotation speed affects the output angular velocity of disk and the output PEH voltage. That is, as the blade speed increases, the disk angular velocity becomes nonlinear and chaotic which is more beneficial to generate larger power.


2016 ◽  
Vol 28 (5) ◽  
pp. 619-626 ◽  
Author(s):  
Wei Deng ◽  
Ya Wang

This work reports an input-dependent performance study of a nonlinear piezoelectric energy harvester with introduced magnetic interaction. The performances of the novel harvester with two external magnet arrays (I and II) are compared. Array II that has symmetric magnetic force yields better voltage output under frequency sweep test. As such, the energy harvesting capacity with Array II is performed under two vibration inputs (I and II). Under excitation Input I with periodic varying frequency, experimental results show that the nonlinear piezoelectric harvester outperforms its linear counterpart (no magnetic interaction) at alternating input bandwidths. A 104.5% improvement of root mean square voltage output (318.2% of power output) is obtained under excitation of 0.334 g (root mean square) and bandwidth of 7 Hz. No advantage is observed under Input II consisting of one principal and finite non-principal components. However, detailed study indicates that the amplitude of the principal component and the amplitude ratio of the non-principal components to the principal component in Input II are essential to maintain large-amplitude periodic motion. Our work provides useful insights into the design, characterization, and application of nonlinear energy harvesters with external magnetic forces based on a priori knowledge of input.


2019 ◽  
Vol 97 (4) ◽  
pp. 2371-2397 ◽  
Author(s):  
Guangqing Wang ◽  
Wei-Hsin Liao ◽  
Zexiang Zhao ◽  
Jiangping Tan ◽  
Sujuan Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document