scholarly journals Classification of Cross-Country Ski Skating Sub-Technique Can Be Automated Using Carrier-Phase Differential GNSS Measurements of the Head’s Position

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2705
Author(s):  
Øyvind Gløersen ◽  
Matthias Gilgien

Position–time tracking of athletes during a race can provide useful information about tactics and performance. However, carrier-phase differential global navigation satellite system (dGNSS)-based tracking, which is accurate to about 5 cm, might also allow for the extraction of variables reflecting an athlete’s technique. Such variables include cycle length, cycle frequency, and choice of sub-technique. The aim of this study was to develop a dGNSS-based method for automated determination of sub-technique and cycle characteristics in cross-country ski skating. Sub-technique classification was achieved using a combination of hard decision rules and a neural network classifier (NNC) on position measurements from a head-mounted dGNSS antenna. The NNC was trained to classify the three main sub-techniques (G2–G4) using optical marker motion data of the head trajectory of six subjects during treadmill skiing. Hard decision rules, based on the head’s sideways and vertical movement, were used to identify phases of turning, tucked position and G5 (skating without poles). Cycle length and duration were derived from the components of the head velocity vector. The classifier’s performance was evaluated on two subjects during an in-field roller skiing test race by comparison with manual classification from video recordings. Classification accuracy was 92–97% for G2–G4, 32% for G5, 75% for turning, and 88% for tucked position. Cycle duration and cycle length had a root mean square (RMS) deviation of 2–3%, which was reduced to <1% when cycle duration and length were averaged over five cycles. In conclusion, accurate dGNSS measurements of the head’s trajectory during cross-country skiing contain sufficient information to classify the three main skating sub-techniques and characterize cycle length and duration.

2021 ◽  
Vol 13 (9) ◽  
pp. 1621
Author(s):  
Duojie Weng ◽  
Shengyue Ji ◽  
Yangwei Lu ◽  
Wu Chen ◽  
Zhihua Li

The differential global navigation satellite system (DGNSS) is an enhancement system that is widely used to improve the accuracy of single-frequency receivers. However, distance-dependent errors are not considered in conventional DGNSS, and DGNSS accuracy decreases when baseline length increases. In network real-time kinematic (RTK) positioning, distance-dependent errors are accurately modelled to enable ambiguity resolution on the user side, and standard Radio Technical Commission for Maritime Services (RTCM) formats have also been developed to describe the spatial characteristics of distance-dependent errors. However, the network RTK service was mainly developed for carrier-phase measurements on professional user receivers. The purpose of this study was to modify the local-area DGNSS through the use of network RTK corrections. Distance-dependent errors can be reduced, and accuracy for a longer baseline length can be improved. The results in the low-latitude areas showed that the accuracy of the modified DGNSS could be improved by more than 50% for a 17.9 km baseline during solar active years. The method in this paper extends the use of available network RTK corrections with high accuracy to normal local-area DGNSS applications.


2021 ◽  
Vol 13 (4) ◽  
pp. 788
Author(s):  
Qinghua Zhang ◽  
Yongxing Zhu ◽  
Zhengsheng Chen

An in-depth and comprehensive assessment of new observations from BDS-3 satellites is presented, with the main focus on the Carrier-to-Noise density ratio (C/N0), the quality of code and carrier phase observations for B1C and B2a signal. The signal characteristics of geosynchronous earth orbit (GEO), inclined geosynchronous satellite orbit (IGSO) and medium earth orbit (MEO) satellites of BDS-3 were grouped and compared, respectively. The evaluation results of the new B1C and B2a signals of BDS-3 were compared with the previously B1I/B2I/B3I signals and the interoperable signals of GPS, Galileo and quasi-zenith satellite system (QZSS) were compared simultaneously. As expected, the results clearly show that B1C and B2a have better signal strength and higher accuracy, including code and carrier phase observations. The C/N0 of the B2a signal is about 3 dB higher than other signals. One exception is the code observation accuracy of B3I, which value is less than 0.15 m. The carrier precision of B1C and B2a is better than that of B1I/B2I/B3I. Despite difference-in-difference (DD) observation quantity or zero-base line evaluation is adopted, while B1C is about 0.3 mm higher carrier precision than B2a. The BDS-3 MEO satellite and GPS, Galileo, and QZSS satellites have the same level of signal strength, code and phase observation accuracy at the interoperable frequency, namely 1575.42 MHz and 1176.45 MHz which are very suitable for the co-position application.


2015 ◽  
Vol 86 (3-4) ◽  
pp. 191-209 ◽  
Author(s):  
Orsolya Kreneisz ◽  
Joel C. Glover

Using high-speed video cinematography, we characterized kinematically the spontaneous tail movements made by the appendicularian urochordate Oikopleura dioica. Videos of young adult (1-day-old) animals discriminated 4 cardinal movement types: bending, nodding, swimming and filtering, each of which had a characteristic signature including cyclicity, event or cycle duration, cycle frequency, cycle frequency variation, laterality, tail muscle segment coordination and episode duration. Bending exhibited a more common, unilateral form (single bending) and a rarer, bilateral form (alternating bending). Videos of developing animals showed that bending and swimming appeared in rudimentary form starting just after hatching and exhibited developmental changes in movement excursion, duration and frequency, whereas nodding and filtering appeared in the fully mature form in young adults at the time of first house production. More complex behaviors were associated with inflating, entering and exiting the house. We also assessed the influence of descending inputs by separating the tail (which contains all muscles and most likely the neural circuits that generate most motor outputs) from the head. Isolated tails spontaneously generated either bending or swimming movements in abnormally protracted episodes. This together with other observations of interactions between bending and swimming behaviors indicates the presence of several types of descending inputs that regulate the activity of the pattern generating circuitry in the tail nervous system.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4882
Author(s):  
Yinghao Zhao ◽  
Letao Zhou ◽  
Wei Feng ◽  
Shaoguang Xu

Since the observation precision of the Global Navigation Satellite System (GNSS) carrier phase is on the order of millimeters, if the phase ambiguity is correctly solved, while calibrating the receiver inter-frequency bias, time synchronization on the order of tens of picoseconds is expected. In this contribution, a method that considers the prior constraints of the between-receiver inter-frequency bias (IFB) and its random variation characteristics is proposed for the estimation of the between-receiver clock difference, based on the uncombined GNSS carrier phase and pseudorange observations of the zero and short baselines. The proposed method can rapidly achieve the single-difference ambiguity resolution of the zero and short baselines, and then obtain the high-precision relative clock offset, by using only the carrier phase observations, along with the between-receiver IFBs being simultaneously determined. Our numerical tests, carried out using GNSS observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, show that the method can fix the between-receiver single-difference ambiguity successfully within an average of fewer than 2 epochs (interval 30 s). Then, a clock difference between two receivers with millimeter precision is obtained, achieving time synchronization on tens of picoseconds level, and deriving a frequency stability of 5 × 10−14 for averaging times of 30,000 s. Furthermore, the proposed approach is compared with the precise point positioning (PPP) time transfer method. The results show that, for different types of receivers, the agreement between the two methods is between −6.7 ns and 0.2 ns.


2019 ◽  
Vol 94 ◽  
pp. 01012 ◽  
Author(s):  
Irwan Gumilar ◽  
Brian Bramanto ◽  
Fuad F. Rahman ◽  
I Made D. A. Hermawan

As the modernized Global Navigation Satellite System (GNSS) method, Real Time Kinematic (RTK) ensures high accuracy of position (within several centimeters). This method uses Ultra High Frequency (UHF) radio to transmit the correction data, however, due to gain and power issues, Networked Transport of RTCM via Internet Protocol (RTCM) is used to transmit the correction data for a longer baseline. This Research aims to investigate the performance of short to long-range single baseline RTK GNSS (Up to 80 KM) by applying modified LAMBDA method to resolve the ambiguity in carrier phase. The RTK solution then compared with the differential GNSS network solution. The results indicate that the differences are within RTK accuracy up to 80 km are several centimeter for horizontal solution and three times higher for vertical solution.


2018 ◽  
Vol 71 (4) ◽  
pp. 1011-1024 ◽  
Author(s):  
Rui Tu ◽  
Jinhai Liu ◽  
Rui Zhang ◽  
Pengfei Zhang ◽  
Xiaochun Lu

This paper proposes a model for combined Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) Real-Time Kinematic (RTK) positioning. The approach uses only one common reference ambiguity, for example, that of GPS L1, and estimates the pseudo-range and carrier phase system and frequency biases. The validations show that these biases are stable during a continuous reference ambiguity period and can be easily estimated, and the other estimated double-differenced ambiguities, such as those of GPS L2, BDS L1, and BDS L2, are not affected. Therefore, our approach solves the problems of a frequently changing reference satellite. In addition, because all the carrier phase observations use the same reference ambiguity, a relationship is established between the different systems and frequencies, and the strength of the combined model is thus increased.


2019 ◽  
Vol 11 (19) ◽  
pp. 2271 ◽  
Author(s):  
Sunkyoung Yu ◽  
Donguk Kim ◽  
Junesol Song ◽  
Changdon Kee

The covariance of real-time global positioning system (GPS) orbits has been drawing attention in various fields such as user integrity, navigation performance improvement, and fault detection. The international global navigation satellite system (GNSS) service (IGS) provides real-time orbit standard deviations without correlations between the axes. However, without correlation information, the provided covariance cannot assure the performance of the orbit product, which would, in turn, causes significant problems in fault detection and user integrity. Therefore, we studied real-time GPS orbit covariance characteristics along various coordinates to effectively provide conservative covariance. To this end, the covariance and precise orbits are estimated by means of an extended Kalman filter using double-differenced carrier phase observations of 61 IGS reference stations. Furthermore, we propose a new method for providing covariance to minimize loss of correlation. The method adopted by the IGS, which neglects correlation, requires 4.5 times the size of the covariance to bind orbit errors. By comparison, our proposed method reduces this size from 4.5 to 1.3 using only one additional parameter. In conclusion, the proposed method effectively provides covariance to users.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4046 ◽  
Author(s):  
Fabian Ruwisch ◽  
Ankit Jain ◽  
Steffen Schön

We present analyses of Global Navigation Satellite System (GNSS) carrier phase observations in multiple kinematic scenarios for different receiver types. Multi-GNSS observations are recorded on high sensitivity and geodetic-grade receivers operating on a moving zero-baseline by conducting terrestrial urban and aerial flight experiments. The captured data is post-processed; carrier phase residuals are computed using the double difference (DD) concept. The estimated noise levels of carrier phases are analysed with respect to different parameters. We find DD noise levels for L1 carrier phase observations in the range of 1.4–2 mm (GPS, Global Positioning System), 2.8–4.6 mm (GLONASS, Global Navigation Satellite System), and 1.5–1.7 mm (Galileo) for geodetic receiver pairs. The noise level for high sensitivity receivers is at least higher by a factor of 2. For satellites elevating above 30 ∘ , the dominant noise process is white phase noise. For the flight experiment, the elevation dependency of the noise is well described by the exponential model, while for the terrestrial urban experiment, multipath and diffraction effects overlay; hence no elevation dependency is found. For both experiments, a carrier-to-noise density ratio (C/N 0 ) dependency for carrier phase DDs of GPS and Galileo is clearly visible with geodetic-grade receivers. In addition, C/N 0 dependency is also visible for carrier phase DDs of GLONASS with geodetic-grade receivers for the terrestrial urban experiment.


Sign in / Sign up

Export Citation Format

Share Document