scholarly journals Investigation on Spectrum Estimation Methods for Bimodal Sea State Conditions

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2995
Author(s):  
Giovanni Battista Rossi ◽  
Francesco Crenna ◽  
Marta Berardengo ◽  
Vincenzo Piscopo ◽  
Antonio Scamardella

The reliable monitoring of sea state parameters is a key factor for weather forecasting, as well as for ensuring the safety and navigation of ships. In the current analysis, two spectrum estimation techniques, based on the Welch and Thomson methods, were applied to a set of random wave signals generated from a theoretical wave spectrum obtained by combining wind sea and swell components with the same prevailing direction but different combinations of significant wave heights, peak periods, and peak enhancement factors. A wide benchmark study was performed to systematically apply and compare the two spectrum estimation methods. In this respect, different combinations of wind sea spectra, corresponding to four grades of the Douglas Scale, were combined with three swell spectra corresponding to different swell categories. The main aim of the benchmark study was to systematically investigate the effectiveness of the Welch and Thomson methods in terms of spectrum restitution and the assessment of sea state parameters. The spectrum estimation methods were applied to random wave signals with different durations, namely 600 s (short) and 3600 s (long), to investigate how the record length affected the assembled sea state parameters, which, in turn, were assessed by the nonlinear least square method. Finally, based on the main outcomes of the benchmark study, some suggestions are provided to select the most suitable spectrum reconstruction method and increase the effectiveness of the assembled sea state parameters.

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1416
Author(s):  
Giovanni Battista Rossi ◽  
Francesco Crenna ◽  
Vincenzo Piscopo ◽  
Antonio Scamardella

The monitoring of sea state conditions, either for weather forecasting or ship seakeeping analysis, requires the reliable assessment of the sea spectra encountered by the ship, either as a final result or intermediate step for the measurement of the relevant wave-motion parameters. In current analyses, different spectrum estimation methods, namely the Welch, Thomson and ARMA models, have been applied and compared based on a set of random wave signals, with different durations, representative of several sea state conditions. Subsequently, two sea spectrum reconstruction techniques were described and applied in order to detect the main sea state parameters, namely the significant wave height, the mean wave period and the spectrum peak enhancement factor. The performances of both spectral analysis and sea state reconstruction methods are discussed in order to provide some preliminary guidelines for practical application purposes. In this respect, based on current results, the Welch and Thomson methods seem to be the most promising techniques, combined with the nonlinear least-square reconstruction technique.


2012 ◽  
Vol 529 ◽  
pp. 139-143
Author(s):  
Zong Feng Ma

A low-cost, novel and robust heterodyne laser Doppler radar based on Er-doped fiber laser is presented in this paper. Reliable optical fiber components and instruments for the optical communication were used to build this system. All devices of optical circuit are connected by single-mode fibers making the system reliable and setup arrangement flexible. Spectrum estimation methods based on an efficient digital signal processing technique, fast Fourier transformation (FFT), was utilized to determine the location of the peak. Experiments were performed on a moving hard target with this developed prototype. The results are presented: the minimum velocity can be measured is below 0.5mm/s, and the resultant nonlinear of the measured curve calculated by least square method is below 100 ppm.


Author(s):  
Sungwook Chung ◽  
Minsung Chun ◽  
Kibok Jang ◽  
Youngsuk Suh

In most offshore projects recently ordered, spectral fatigue analysis is required for design integrity. However, the spectral fatigue analysis is very complicated to implement since it has many variations for parameters and forms of input data, and the classification and commercial software packages are exposing limit to support all those variations. A topside fatigue analysis for a FPSO design in West Africa is one of such a challenging project due to the fact that the specification of the project requires spectral fatigue analysis considering 3-peak Ochi-Hubble wave spectrum, Wrapped normal wave spreading and sea state data with 3 wave components, main swell, secondary swell and wind sea. In this study, a practical spectral fatigue analysis procedure is introduced in order to implement the fatigue analysis using a commercial program SACS. Applying adaptive cosine spreading wave distribution which can approximate Wrapped normal wave spreading is devised for each sea state and the comparison between two wave spreading is carried out. Finally, the proposed methodology is justified by analyzing the characteristics of the sea state in West Africa.


2005 ◽  
Vol 128 (4) ◽  
pp. 314-321 ◽  
Author(s):  
K. C. Ewans ◽  
L. Vanderschuren ◽  
P. S. Tromans

The motion response of an FPSO is sensitive to the relative intensities and directions of the wind-sea and swell components in a sea state, and the operability of the FPSO is a function of the long-term variation in these components. Estimations of the operability are therefore dependent both on how the sea state is described in terms of its constituent wind-sea and swell components, and on how the long-term variability of the sea state is captured. However, there is currently no consensus on how either the sea state or its long-term variability should be described. We investigate these issues by means of a study of the responses of a typical FPSO to the wave fields at a location offshore Namibia and a location off the west coast of New Zealand. We make use of a state-of-the-art program for splitting a directional wave spectrum into wind-sea and swell components, and we examine the effect on the motion responses of allowing the spectra to be split into many swell partitions or constraining the spectral split to a maximum of two partitions, as is often assumed in response calculations. The resulting decompositions are used to examine the effects of swell on hull motions and, hence, to identify methods for generating sea state criteria for operability. In addition, one-year metocean conditions are estimated; these are relevant for analysis of the limits on operations.


Kapal ◽  
2020 ◽  
Vol 17 (3) ◽  
pp. 114-122
Author(s):  
Nurman Firdaus ◽  
Baharuddin Ali ◽  
Mochammad Nasir ◽  
M Muryadin

The wave height parameter in ocean waves is one of the important information for a marine structure design. The present paper investigates the results of wave heights distribution from laboratory-generated for single sea state. Data of the random wave time series collected at the ocean basin are analyzed using the wave spectrum and compared with the theoretical spectrum in this study. The random wave data is varied with four sea states consisting of sea states 3, 4, 5 and 6 obtained from laboratory measurements. The parameter conditions of generated sea waves are represented by a value of significant wave height and wave peak period in the range of sea states. The individual wave heights data in each sea state are presented in the form of exceedance probability distribution and the predictions using a linear model. This study aims to estimate the wave heights distribution using the Rayleigh and Weibull distribution model. Furthermore, the accuracy of the wave heights distribution data's prediction results in each sea state has been compared and examined for both models. The applied linear models indicate similar and reasonable estimations on the observed data trends.


Author(s):  
Ruth Lawford ◽  
Jill Bradon ◽  
Thomas Barberon ◽  
Claude Camps ◽  
Richard Jameson

A full characterisation of the individual components of a sea-state is key to enabling the response of an offshore structure to be accurately calculated. This paper discusses the partitioning of a time series of directional wave spectra into wind-sea and swell components with distinct frequency and direction characteristics. Once the wave data have been partitioned, JONSWAP or Pierson-Moskowitz parameters can be fitted to each spectrum using ‘best-fit’ techniques. The result of the partitioning and fitting analyses is a time series of wave parameters defining the wave spectrum for each component of the sea state. A 10-year site specific time series of directional wave spectra has been partitioned in this way and used in the analysis of the Triton FPSO, a turret moored FPSO in the central North Sea. The representation of the directionality and magnitude of each environmental force acting simultaneously on the vessel, allows the relative heading of the vessel to be determined and the mooring and hydrodynamic analyses to be performed. These analyses provided input to a structural analysis of the FPSO, which resulted in an inspection plan for monitoring the effects of the metocean conditions on the unit.


2021 ◽  
Vol 13 (5) ◽  
pp. 986
Author(s):  
Yao Chen ◽  
Mo Huang ◽  
Yuanyuan Zhang ◽  
Changyuan Wang ◽  
Tao Duan

The spaceborne interferometric synthetic aperture radar (InSAR) is expected to measure the sea surface height (SSH) with high accuracy over a wide swath. Since centimeter-level accuracy is required to monitor the ocean sub-mesoscale dynamics, the high accuracy implies that the altimetric errors should be totally understood and strictly controlled. However, for the dynamic waves, they move randomly all the time, and this will lead to significant altimetric errors. This study proposes an analytical method for the dynamic wave-related errors of InSAR SSH measurement based on the wave spectrum and electromagnetic scattering model. Additionally, the mechanisms of the dynamic wave-related errors of InSAR altimetry are analyzed, and the detailed numerical model is derived. The proposed analytical method is validated with NASA’s Surface Water and Ocean Topography (SWOT) project error budget, and the Root-Mean-Square Errors (RMSEs) are in good agreement (0.2486 and 0.2470 cm on a 0.5 km2 grid, respectively). Instead of analysis for a typical project, the proposed method can be applied to different radar parameters under multiple sea states. The RMSEs of Ka-band under low sea state, moderate sea state, and high sea state are 0.2670, 1.3154, and 6.6361 cm, respectively. Moreover, the RMSEs of X-band and Ku-band are also simulated and presented. The experimental results demonstrate that the dynamic wave-related errors of InSAR altimetry are not sensitive to the frequencies but are sensitive to the sea states. The error compensation method is necessary for moderate and higher sea states for centimetric accuracy requirements. This can provide feasible suggestions on system design and error budget for the future interferometric wide-swath altimeter.


2021 ◽  
Vol 9 (1) ◽  
pp. 64
Author(s):  
Silvia Pennino ◽  
Antonio Angrisano ◽  
Vincenzo Della Corte ◽  
Giampaolo Ferraioli ◽  
Salvatore Gaglione ◽  
...  

A parametric wave spectrum resembling procedure is applied to detect the sea state parameters, namely the wave peak period and significant wave height, based on the measurement and analysis of the heave and pitch motions of a vessel in a seaway, recorded by a smartphone located onboard the ship. The measurement system makes it possible to determine the heave and pitch acceleration spectra of the reference ship in the encounter frequency domain and, subsequently, the absolute sea spectra once the ship motion transfer functions are provided. The measurements have been carried out onboard the research ship “Laura Bassi”, during the oceanographic campaign in the Antarctic Ocean carried out in January and February 2020. The resembled sea spectra are compared with the weather forecast data, provided by the global-WAM (GWAM) model, in order to validate the sea spectrum resembling procedure.


Author(s):  
Céline Drouet ◽  
Nicolas Cellier ◽  
Jérémie Raymond ◽  
Denis Martigny

In-service monitoring can help to increase safety of ships especially regarding the fatigue assessment. For this purpose, it is compulsory to know the environmental conditions encountered: wind, but also the full directional wave spectrum. During the EU TULCS project, a full scale measurements campaign has been conducted onboard the CMA-CGM 13200 TEU container ship Rigoletto. She has been instrumented to measure deformation of the ship as well as the sea state encountered during its trip. This paper will focus on the sea state estimation. Three systems have been installed to estimate the sea state encountered by the Rigoletto: An X-band radar from Ocean Waves with WAMOS® system and two altimetric wave radars from RADAC®. Nevertheless, the measured significant wave height can be disturbed by several external elements like bow waves, sprays, sea surface ripples, etc… Furthermore, ship motions are also measured and can provide another estimation of the significant wave height using a specific algorithm developed by DCNS Research for the TULCS project. As all those estimations are inherently different, it is necessary to make a fusion of those data to provide a single estimation (“best estimate”) of the significant wave height. This paper will present the data fusion process developed for TULCS and show some first validation results.


2012 ◽  
Vol 433-440 ◽  
pp. 6054-6059
Author(s):  
Gan Nan Yuan ◽  
Rui Cai Jia ◽  
Yun Tao Dai ◽  
Ying Li

In the radar imaging mechanism different phenomena are present, as a result the radar image is not a direct representation of the sea state. In analyzing radar image spectra, it can be realized that all of these phenomena produce distortions in the wave spectrum. The main effects are more energy for very low frequencies. This work investigates the structure of the sea clutter spectrum, and analysis the low wave number energy influence on determining sea surface current. Then the radar measure current is validated by experiments. By comparing with the in situ data, we know that the radar results reversed by image spectrum without low wave number spectrum have high precision. The low wave number energy influent determining current seriously.


Sign in / Sign up

Export Citation Format

Share Document