scholarly journals Fast Handover Algorithm Based on Location and Weight in 5G-R Wireless Communications for High-Speed Railways

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3100
Author(s):  
Baofeng Duan ◽  
Cuiran Li ◽  
Jianli Xie ◽  
Wei Wu ◽  
Dongmei Zhou

With the booming development of high-speed railways (HSRs), key technologies of wireless communications need to be constantly innovated. In particular, the frontier issue of low delay of the handover for the fifth generation (5G) in fast-moving scenarios has attracted attention from both industry and academia. Based on an analysis of a large number of measured data and the location of the user equipment (UE), a fast handover algorithm is proposed to solve the problem of long delay for a train moving at high speed in a 5G-railway (5G-R). By calculating the speed of a train and its direction of movement, a reasonable handover mode is selected and the handover chain of neighboring cells is identified. The location of the train can be calculated to determine whether UE enters the defined identification zone of pre-handover. Depending on the values collected in the measurement report, the command of the handover is triggered when the weight of the target cell is greater than that of the source cell. Our experimental results show that the delay of the fast handover algorithm is reduced by 2.03%, and the success rate of the handover is increased by 0.42%. Research directions for smart railways are discussed based on these findings.

Author(s):  
Hanaa Abumarshoud ◽  
Cheng Chen ◽  
Mohamed Sufyan Islim ◽  
Harald Haas

Wireless connectivity is no longer limited to facilitating communications between individuals, but is also required to support diverse and heterogeneous applications, services and infrastructures. Internet of things (IoT) systems will dominate future technologies, allowing any and all devices to create, share and process data. If artificial intelligence resembles the brain of IoT, then high-speed connectivity forms the nervous system that connects the devices. For IoT to safely operate autonomously, it requires highly secure and reliable wireless links. In this article, we shed light on the potential of optical wireless communications to provide high-speed secure and reliable ubiquitous access as an enabler for fifth generation and beyond wireless networks.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 59540-59547
Author(s):  
Yong Chen ◽  
Kaiyu Niu ◽  
Zhen Wang

2020 ◽  
Vol 26 (3) ◽  
pp. 169-183
Author(s):  
Phudit Ampririt ◽  
Yi Liu ◽  
Makoto Ikeda ◽  
Keita Matsuo ◽  
Leonard Barolli ◽  
...  

The Fifth Generation (5G) networks are expected to be flexible to satisfy demands of high-quality services such as high speed, low latencies and enhanced reliability from customers. Also, the rapidly increasing amount of user devices and high user’s requests becomes a problem. Thus, the Software-Defined Network (SDN) will be the key function for efficient management and control. To deal with these problems, we propose a Fuzzy-based SDN approach. This paper presents and compares two Fuzzy-based Systems for Admission Control (FBSAC) in 5G wireless networks: FBSAC1 and FBSAC2. The FBSAC1 considers for admission control decision three parameters: Grade of Service (GS), User Request Delay Time (URDT) and Network Slice Size (NSS). In FBSAC2, we consider as an additional parameter the Slice Priority (SP). So, FBSAC2 has four input parameters. The simulation results show that the FBSAC2 is more complex than FBSAC1, but it has a better performance for admission control.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 169
Author(s):  
Sherief Hashima ◽  
Basem M. ElHalawany ◽  
Kohei Hatano ◽  
Kaishun Wu ◽  
Ehab Mahmoud Mohamed

Device-to-device (D2D) communication is a promising paradigm for the fifth generation (5G) and beyond 5G (B5G) networks. Although D2D communication provides several benefits, including limited interference, energy efficiency, reduced delay, and network overhead, it faces a lot of technical challenges such as network architecture, and neighbor discovery, etc. The complexity of configuring D2D links and managing their interference, especially when using millimeter-wave (mmWave), inspire researchers to leverage different machine-learning (ML) techniques to address these problems towards boosting the performance of D2D networks. In this paper, a comprehensive survey about recent research activities on D2D networks will be explored with putting more emphasis on utilizing mmWave and ML methods. After exploring existing D2D research directions accompanied with their existing conventional solutions, we will show how different ML techniques can be applied to enhance the D2D networks performance over using conventional ways. Then, still open research directions in ML applications on D2D networks will be investigated including their essential needs. A case study of applying multi-armed bandit (MAB) as an efficient online ML tool to enhance the performance of neighbor discovery and selection (NDS) in mmWave D2D networks will be presented. This case study will put emphasis on the high potency of using ML solutions over using the conventional non-ML based methods for highly improving the average throughput performance of mmWave NDS.


2011 ◽  
Vol 287-290 ◽  
pp. 104-107
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools and cutting parameters are determinted by simulating the influences of cutting speed, cutting depth and feeding rate on the cutting parameters using FEA.


2010 ◽  
Vol 129-131 ◽  
pp. 645-647
Author(s):  
Fan Lei Yan ◽  
Lian He Yang ◽  
Hai Feng Chang

The area of web-based CAD system has grown since the mid-1990s. This paper introduces a new web-based CAD system for fabric appearance. The system uses the Browser/Server structure, and the designer can employ this system installed on the server to build a 3D model of fabric appearance through the Web browser. The basic architecture is discussed in this paper. Some key technologies, such as graphics display, texture mapping and the data exchange, are also investigated. In the last, some future research directions are presented.


Sign in / Sign up

Export Citation Format

Share Document