scholarly journals Device Free Detection in Impulse Radio Ultrawide Bandwidth Systems

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3255
Author(s):  
Waqas Bin Abbas ◽  
Fuhu Che ◽  
Qasim Zeeshan Ahmed ◽  
Fahd Ahmed Khan ◽  
Temitope Alade

In this paper, an analytical framework is presented for device detection in an impulse radio (IR) ultra-wide bandwidth (UWB) system and its performance analysis is carried out. The Neyman–Pearson (NP) criteria is employed for this device-free detection. Different from the frequency-based approaches, the proposed detection method utilizes time domain concepts. The characteristic function (CF) is utilized to measure the moments of the presence and absence of the device. Furthermore, this method is easily extendable to existing device-free and device-based techniques. This method can also be applied to different pulse-based UWB systems which use different modulation schemes compared to IR-UWB. In addition, the proposed method does not require training to measure or calibrate the system operating parameters. From the simulation results, it is observed that an optimal threshold can be chosen to improve the ROC for UWB system. It is shown that the probability of false alarm, PFA, has an inverse relationship with the detection threshold and frame length. Particularly, to maintain PFA<10−5 for a frame length of 300 ns, it is required that the threshold should be greater than 2.2. It is also shown that for a fix PFA, the probability of detection PD increases with an increase in interference-to-noise ratio (INR). Furthermore, PD approaches 1 for INR >−2 dB even for a very low PFA i.e., PFA=1×10−7. It is also shown that a 2 times increase in the interference energy results in a 3 dB improvement in INR for a fixed PFA=0.1 and PD=0.5. Finally, the derived performance expressions are corroborated through simulation.

Activity detection based on likelihood ratio in the presence of high dimensional multimodal data acts as a challenging problem as the estimation of joint probability density functions (pdfs) with intermodal dependence is tedious. The existing method with above expectations fails due to poor performance in the presence of strongly dependent data. This paper proposes a Compressive Sensing Based Detection method in the Multi-sensor signal using the deep learning method. The proposed Tree copula- Grasshopper optimization based Deep Convolutional Neural Network (TC-GO based DCNN) detection method comprises of three main steps, such as compressive sensing, fusion and detection. The signals are initially collected from the sensors in order to subject them under tensor based compressive sensing. The compressed signals are then fused together using tree copula theory, and the parameters are estimated with the Grasshopper optimization algorithm (GOA). The activity detection is finally performed using DCNN, which is trained with the Stochastic Gradient Descent (SGD) Optimizer. The performance of the proposed method is evaluated based on the evaluation metrics, such as probability of detection and probability of false alarm. The highest probability of detection and least probability of false alarm are obtained as 0.9083, and 0.0959, respectively using the proposed method that shows the effectiveness of the proposed method in activity detection.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Alessandra Budillon ◽  
Gilda Schirinzi

The problem of detecting and locating multiple scatterers in multibaseline Synthetic Aperture Radar (SAR) tomography, starting from compressive measurements and applying support detection techniques, is addressed. Different approaches based on the detection of the support set of the unknown sparse vector, that is, of the position of the nonzero elements in the unknown sparse vector, are analyzed. Support detection techniques have already proved to allow a reduction in the number of measurements required for obtaining a reliable solution. In this paper, a support detection method, based on a Generalized Likelihood Ratio Test (Sup-GLRT), is proposed and compared with the SequOMP method, in terms of probability of detection achievable with a given probability of false alarm and for different numbers of measurements.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Modar Safir Shbat ◽  
Vyacheslav Tuzlukov

We derive the probability of false alarm and detection threshold under employment of the generalized detector (GD) in cognitive radio (CR) systems for two scenarios: firstly, the independent antenna array elements; the secondly, the correlated antenna array elements. The energy detector (ED) and GD spectrum sensing performances are compared under the same initial conditions. The simulation results show that implementation of the GD improves the spectrum sensing performance in CR systems both for independent and correlated antenna array elements.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kefeng Ji ◽  
Xiangwei Xing ◽  
Huanxin Zou ◽  
Jixiang Sun

When applying the constant false alarm rate (CFAR) detector to ship detection on synthetic aperture radar (SAR) imagery, multiple interferers such as upwelling, breaking waves, ambiguities, and neighboring ships in a dense traffic area will degrade the probability of detection. In this paper, we propose a novel variable index and excision CFAR (VIE-CFAR) based ship detection method to alleviate the masking effect of multiple interferers. Firstly, we improve the variable index (VI) CFAR with an excision procedure, which censors the multiple interferers from the reference cells. And then, the paper integrates the novel CFAR concept into a ship detection scheme on SAR imagery, which adopts the VIE-CFAR to screen reference cells and the distribution to derive detection threshold. Finally, we analyze the performances of the VIE-CFAR under different environments and validate the proposed method on both ENVISAT and TerraSAR-X SAR data. The results demonstrate that the proposed method outperforms other existing detectors, especially in the presence of multiple interferers.


2021 ◽  
Vol 25 (Special) ◽  
pp. 1-56-1-62
Author(s):  
Sarah S. Mohammed ◽  
◽  
Maher K. Mahmood ◽  

This study presents the performance of the auto-correlation methods for detecting weak signals, where the signal level is much less than the noise level. Double and triple auto-correlation techniques are used to improve the detection performance compared with the single autocorrelation. Simulation results obtained by MATLAB programs show that the multiple correlation techniques outperform the single correlation in terms of probability of detection and probability of false alarm versus signal to noise ratio SNR.


2013 ◽  
Vol 23 (02) ◽  
pp. 1350019 ◽  
Author(s):  
GEORGES KADDOUM ◽  
GHYSLAIN GAGNON ◽  
FRANCOIS GAGNON

In this paper, we propose a new asynchronous multiuser communication system based on spread spectrum and chaotic symbolic dynamics modulation. By combining spread spectrum and chaotic modulation, the proposed system provides increased security by reducing the probability of detection while allowing multiuser transmissions. The sequence synchronization of chaos communication system is studied. A time acquisition technique based on serial search is proposed to achieve synchronization. An analysis is carried out to determine the probability of detection, the probability of false alarm and the bit error rate of the system. Simulation results show that the proposed system can achieve sequence synchronization under low signal-to-noise ratios, and also confirm our analytically computed expressions.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Manop Yingram ◽  
Suttichai Premrudeepreechacharn

The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast.ΔP/P>38.41% could determine anti-islanding condition within 0.04 s;ΔP/P<-24.39% could determine anti-islanding condition within 0.04 s;-24.39%≤ΔP/P≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of-24.39% ≤ΔP/P ≤38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not.


2012 ◽  
Vol 25 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Rashmi Deka ◽  
Soma Chakraborty ◽  
Sekhar Roy

Spectrum availability is becoming scarce due to the rise of number of users and rapid development in wireless environment. Cognitive radio (CR) is an intelligent radio system which uses its in-built technology to use the vacant spectrum holes for the use of another service provider. In this paper, genetic algorithm (GA) is used for the best possible space allocation to cognitive radio in the spectrum available. For spectrum reuse, two criteria have to be fulfilled - 1) probability of detection has to be maximized, and 2) probability of false alarm should be minimized. It is found that with the help of genetic algorithm the optimized result is better than without using genetic algorithm. It is necessary that the secondary user should vacate the spectrum in use when licensed users are demanding and detecting the primary users accurately by the cognitive radio. Here, bit error rate (BER) is minimized for better spectrum sensing purpose using GA.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 631
Author(s):  
Josip Lorincz ◽  
Ivana Ramljak ◽  
Dinko Begušić

Due to the capability of the effective usage of the radio frequency spectrum, a concept known as cognitive radio has undergone a broad exploitation in real implementations. Spectrum sensing as a core function of the cognitive radio enables secondary users to monitor the frequency band of primary users and its exploitation in periods of availability. In this work, the efficiency of spectrum sensing performed with the energy detection method realized through the square-law combining of the received signals at secondary users has been analyzed. Performance evaluation of the energy detection method was done for the wireless system in which signal transmission is based on Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing. Although such transmission brings different advantages to wireless communication systems, the impact of noise variations known as noise uncertainty and the inability of selecting an optimal signal level threshold for deciding upon the presence of the primary user signal can compromise the sensing precision of the energy detection method. Since the energy detection may be enhanced by dynamic detection threshold adjustments, this manuscript analyses the influence of detection threshold adjustments and noise uncertainty on the performance of the energy detection spectrum sensing method in single-cell cognitive radio systems. For the evaluation of an energy detection method based on the square-law combining technique, the mathematical expressions of the main performance parameters used for the assessment of spectrum sensing efficiency have been derived. The developed expressions were further assessed by executing the algorithm that enabled the simulation of the energy detection method based on the square-law combining technique in Multiple-Input Multiple-Output—Orthogonal Frequency Division Multiplexing cognitive radio systems. The obtained simulation results provide insights into how different levels of detection threshold adjustments and noise uncertainty affect the probability of detection of primary user signals. It is shown that higher signal-to-noise-ratios, the transmitting powers of primary user, the number of primary user transmitting and the secondary user receiving antennas, the number of sampling points and the false alarm probabilities improve detection probability. The presented analyses establish the basis for understanding the energy detection operation through the possibility of exploiting the different combinations of operating parameters which can contribute to the improvement of spectrum sensing efficiency of the energy detection method.


Author(s):  
Faten Mashta ◽  
Mohieddin Wainakh ◽  
Wissam Altabban

Spectrum sensing in cognitive radio has difficult and complex requirements such as requiring speed and sensing accuracy at very low SNRs. In this paper, the authors propose a novel fully blind sequential multistage spectrum sensing detector to overcome the limitations of single stage detector and make use of the advantages of each detector in each stage. In first stage, energy detection is used because of its simplicity. However, its performance decreases at low SNRs. In second and third stage, the maximum eigenvalues detector is adopted with different smoothing factor in each stage. Maximum eigenvalues detection technique provide good detection performance at low SNRs, but it requires a high computational complexity. In this technique, the probability of detection improves as the smoothing factor raises at the expense of increasing the computational complexity. The simulation results illustrate that the proposed detector has better sensing accuracy than the three individual detectors and a computational complexity lies in between the three individual complexities.


Sign in / Sign up

Export Citation Format

Share Document