scholarly journals Scheduled QR-BP Detector with Interference Cancellation and Candidate Constraints for MIMO Systems

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3734
Author(s):  
Sangjoon Park

In this paper, a QR-decomposition-based scheduled belief propagation (BP) detector with interference cancellation (IC) and candidate constraints is proposed for multiple-input multiple-output (MIMO) systems. Based on a bipartite graph generated from an upper triangular channel matrix following linear transformation using QR decomposition, the proposed detector performs a sequential message updating procedure between bit nodes. During this updating procedure, candidate constraints are imposed to restrict the number of possible candidate vectors for the calculation of observation-to-bit messages. In addition, after obtaining the soft message corresponding to the bit sequence in each transmit symbol, a hard-decision IC operation is performed to reduce the size of the bipartite graph and indirectly update the messages for the remaining symbols. Therefore, the proposed scheme provides a huge complexity reduction compared to conventional BP detectors that perform message updating by using all related messages directly. Simulation results confirm that the proposed detector can achieve suboptimum error performance with significantly improved convergence speed and reduced computational complexity compared to conventional BP detectors in MIMO systems.

2013 ◽  
Vol 347-350 ◽  
pp. 3478-3481
Author(s):  
Li Liu ◽  
Jin Kuan Wang ◽  
Xin Song ◽  
Yin Hua Han ◽  
Yu Huan Wang

Maximum likelihood (ML) detection algorithm for multiple input multiple output (MIMO) systems provided the best bit error rate (BER) performance with heavy calculating complexity. The use of QR decomposition with M-algorithm (QRD-M) had been proposed to provide near-ML detection performance and lower calculating complexity. However, its complexity still grew exponentially with increasing dimension of the transmitted signal. To reduce the problem, an improved detection scheme was proposed here. After constructing the tree detecting model of MIMO systems, the ML search of one layer was done, the branch metrics were calculated and sorted, which gave an ordered set of the layer, then depth-first search were used to search the left layers with termination methods. The proposed algorithm provides near QRD-M detection performance.


Author(s):  
Layak Ali Sd ◽  
K. Kishan Rao ◽  
M. Sushanth Bab

In this papers an efficient ordering scheme for an ordered successive interference cancellation detector is determined under the bit error rate minimization criterion for multiple-input multiple-output(MIMO) communication systems using transmission power control. From the convexity of the Q-function, we evaluate the choice of suitable quantization characteristics for both the decoder messages and the received samples in Low Density Parity Check (LDPC)-coded systems using M-QAM schemes. We derive the ordering strategy that makes the channel gains converge to their geometric mean. Based on this approach, the fixed ordering algorithm is first designed, for which the geometric mean is used for a constant threshold using correlation among ordering results.


2021 ◽  
Vol 11 (16) ◽  
pp. 7305
Author(s):  
Uzokboy Ummatov ◽  
Jin-Sil Park ◽  
Gwang-Jae Jang ◽  
Ju-Dong Lee

In this study, a low complexity tabu search (TS) algorithm for multiple-input multiple-output (MIMO) systems is proposed. To reduce the computational complexity of the TS algorithm, early neighbor rejection (ENR) and layer ordering schemes are employed. In the proposed ENR-aided TS (ENR-TS) algorithm, the least promising k neighbors are excluded from the neighbor set in each layer, which reduces the computational complexity of neighbor examination in each TS iteration. For efficient computation of the neighbors’ metrics, the ENR scheme can be incorporated into QR decomposition-aided TS (ENR-QR-TS). To further reduce the complexity and improve the performance of the ENR-QR-TS scheme, a layer ordering scheme is employed. The layer ordering scheme determines the order in which layers are detected based on their expected metrics, which reduces the risk of excluding likely neighbors in early layers. The simulation results show that the ENR-TS achieves nearly the same performance as the conventional TS while providing up to 82% complexity reduction.


2013 ◽  
Vol 333-335 ◽  
pp. 666-669
Author(s):  
Li Liu ◽  
Jin Kuan Wang ◽  
Xin Song ◽  
Yin Hua Han

Multiple input multiple output (MIMO) systems could increase wireless communication system capacity enormously. The best optimal detection algorithm for MIMO systems was maximum likelihood (ML) detection algorithm, which could provide the best bit error rate (BER) performance for MIMO systems. However, the computational complexity of ML detection algorithm grew exponentially with the number of transmit antennas and the order of modulation, which resulted in difficult using for practice. A modified MIMO signal detection algorithm which combined ML detection with stack algorithm was presented in this paper. After performing QR decomposition of the channel matrix, the ML detection with length L was done firstly. The partial accumulated metrics were calculated and sorted, which produced an ordered set secondly. Based on the ordered set, stack algorithm was performed to search for the symbol with the minimum accumulated metrics. The proposed algorithm reduced the probability of look back in stack algorithm.


2019 ◽  
Vol 24 (1) ◽  
pp. 61-67
Author(s):  
Mohanad Abdulhamid ◽  
Mwaniki Muchai

Abstract A multiple rank modulation (MRM) scheme is proposed that provides better error performance, enhances the data rate and reduces the system demodulation complexity. Multiple input multiple output (MIMO) scheme is a technique that uses several antennas at the transmitter and receiver to minimize error and optimize data speed. MRM is a novel technique that borrows from spatial modulation-MIMO (SM-MIMO) scheme. The basic idea of this scheme involves the transmitter receiving a group of bits and subdividing them into two blocks; rank index block and signal modulation block. The rank index bit block is used to select the rank to be activated and the rank selected contains at least one active transmit antenna (TA). The signal modulation bit block is encoded in a given modulation scheme for transmission. It is then transmitted through the activated rank that contains at least one active TA. The transmitted encoded signal modulation bit block is received through the receive antenna and a receiver. The receiver estimates a rank index and the transmitted symbol from the signal received. The signal modulation bit block is finally decoded. This paper addresses the performance of MRM scheme based on error performance to run cellular fifth generation (5G). We perform and present simulation results of MIMO systems employing MRM scheme to generate bit error rate (BER) of this system.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Keerti Tiwari ◽  
Davinder S. Saini ◽  
Sunil V. Bhooshan

AbstractIn multiple-input multiple-output (MIMO) systems, spatial demultiplexing at the receiver has its own significance. Thus, several detection techniques have been investigated. There is a tradeoff between computational complexity and optimal performance in most of the detection techniques. One of the detection techniques which gives improved performance and acceptable level of complexity is ordered successive interference cancellation (OSIC) with minimum mean square error (MMSE). However, optimal performance can be achieved by maximum likelihood (ML) detection but at a higher complexity level. Therefore, MMSE-OSIC with candidates (OSIC


Author(s):  
В.Б. КРЕЙНДЕЛИН ◽  
М.В. ГОЛУБЕВ

Совместный с прекодингом автовыбор антенн на приемной и передающей стороне - одно из перспективных направлений исследований для реализации технологий Multiple Transmission and Reception Points (Multi-TRP, множество точек передачи и приема) в системах со многими передающими и приемными антеннами Massive MIMO (Multiple-Input-Multiple-Output), которые активно развиваются в стандарте 5G. Проанализированы законодательные ограничения, влияющие на применимость технологий Massive MIMO, и специфика реализации разрабатываемого алгоритма в миллиметровомдиапа -зоне длин волн. Рассмотрены алгоритмы формирования матриц автовыбора антенн как на передающей, так и на приемной стороне. Сформулирована строгая математическая постановка задачи для двух критериев работы алгоритма: максимизация взаимной информации и минимизация среднеквадратичной ошибки. Joint precoding and antenna selection both on transmitter and receiver sides is one of the promising research areas for evolving toward the Multiple Transmission and Reception Points (Multi-TRP) concept in Massive MIMO systems. This technology is under active development in the coming 5G 3GPP releases. We analyze legal restrictions for the implementation of 5G Massive MIMO technologies in Russia and the specifics of the implementation of the developed algorithm in the millimeter wavelength range. Algorithms of antenna auto-selection matrices formation on both transmitting and receiving sides are considered. Two criteria are used for joint antenna selection and precoding: maximizing mutual information and minimizing mean square error.


Author(s):  
Hong Son Vu ◽  
Kien Truong ◽  
Minh Thuy Le

<p>Massive multiple-input multiple-output (MIMO) systems are considered a promising solution to minimize multiuser interference (MUI) based on simple precoding techniques with a massive antenna array at a base station (BS). This paper presents a novel approach of beam division multiple access (BDMA) which BS transmit signals to multiusers at the same time via different beams based on hybrid beamforming and user-beam schedule. With the selection of users whose steering vectors are orthogonal to each other, interference between users is significantly improved. While, the efficiency spectrum of proposed scheme reaches to the performance of fully digital solutions, the multiuser interference is considerably reduced.</p>


Sign in / Sign up

Export Citation Format

Share Document