scholarly journals Hemorrhage Detection Based on 3D CNN Deep Learning Framework and Feature Fusion for Evaluating Retinal Abnormality in Diabetic Patients

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3865
Author(s):  
Sarmad Maqsood ◽  
Robertas Damaševičius ◽  
Rytis Maskeliūnas

Diabetic retinopathy (DR) is the main cause of blindness in diabetic patients. Early and accurate diagnosis can improve the analysis and prognosis of the disease. One of the earliest symptoms of DR are the hemorrhages in the retina. Therefore, we propose a new method for accurate hemorrhage detection from the retinal fundus images. First, the proposed method uses the modified contrast enhancement method to improve the edge details from the input retinal fundus images. In the second stage, a new convolutional neural network (CNN) architecture is proposed to detect hemorrhages. A modified pre-trained CNN model is used to extract features from the detected hemorrhages. In the third stage, all extracted feature vectors are fused using the convolutional sparse image decomposition method, and finally, the best features are selected by using the multi-logistic regression controlled entropy variance approach. The proposed method is evaluated on 1509 images from HRF, DRIVE, STARE, MESSIDOR, DIARETDB0, and DIARETDB1 databases and achieves the average accuracy of 97.71%, which is superior to the previous works. Moreover, the proposed hemorrhage detection system attains better performance, in terms of visual quality and quantitative analysis with high accuracy, in comparison with the state-of-the-art methods.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3922
Author(s):  
Sheeba Lal ◽  
Saeed Ur Rehman ◽  
Jamal Hussain Shah ◽  
Talha Meraj ◽  
Hafiz Tayyab Rauf ◽  
...  

Due to the rapid growth in artificial intelligence (AI) and deep learning (DL) approaches, the security and robustness of the deployed algorithms need to be guaranteed. The security susceptibility of the DL algorithms to adversarial examples has been widely acknowledged. The artificially created examples will lead to different instances negatively identified by the DL models that are humanly considered benign. Practical application in actual physical scenarios with adversarial threats shows their features. Thus, adversarial attacks and defense, including machine learning and its reliability, have drawn growing interest and, in recent years, has been a hot topic of research. We introduce a framework that provides a defensive model against the adversarial speckle-noise attack, the adversarial training, and a feature fusion strategy, which preserves the classification with correct labelling. We evaluate and analyze the adversarial attacks and defenses on the retinal fundus images for the Diabetic Retinopathy recognition problem, which is considered a state-of-the-art endeavor. Results obtained on the retinal fundus images, which are prone to adversarial attacks, are 99% accurate and prove that the proposed defensive model is robust.


Author(s):  
Toufique Ahmed Soomro ◽  
Ahsin Murtaza Bughio ◽  
Shahid Hussain Siyal ◽  
Ali Anwar Panwar ◽  
Nasreen Nizamani

Diabetic Retinopathy (DR) is one of the major eye diseases that causes damage to retina of the human eye ball due to the rupture of tiny blood vessels. DR is identified by the ophthalmologists on the basis of various specifications i.e., textures, blood vessels and pathologies. The ophthalmologists are recently considering software for eye diseases detection based on image processing designed by the computing techniques and bio-medical images. In the analysis of medical imaging, traditional techniques of image processing and computer vision have played an important role in the field of ophthalmology. From the past two decades, there is a tremendous advancement in the development of computerized system for DR detection. This paper comprises the five parts of analysis on image based retinal detection DR, named as review of low varying contrast techniques of the retinal fundus Images (RFI), review of noise effect in the fundus images, review of pathology detection method from the retinal fundus images, review of blood vessels extraction from the RFI, and review of automatic algorithm for the DR detection. This paper presents a comprehensive detail to each problem in the retinal images. The procedures that are currently utilized to analyze the contrast issue and noise issues are discussed in detail. The paper also explains the techniques used for segmentation. In the end, the recent automated detection system of related eye diseases or DR is described.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 817
Author(s):  
Lizong Zhang ◽  
Shuxin Feng ◽  
Guiduo Duan ◽  
Ying Li ◽  
Guisong Liu

Microaneurysms (MAs) are the earliest detectable diabetic retinopathy (DR) lesions. Thus, the ability to automatically detect MAs is critical for the early diagnosis of DR. However, achieving the accurate and reliable detection of MAs remains a significant challenge due to the size and complexity of retinal fundus images. Therefore, this paper presents a novel MA detection method based on a deep neural network with a multilayer attention mechanism for retinal fundus images. First, a series of equalization operations are performed to improve the quality of the fundus images. Then, based on the attention mechanism, multiple feature layers with obvious target features are fused to achieve preliminary MA detection. Finally, the spatial relationships between MAs and blood vessels are utilized to perform a secondary screening of the preliminary test results to obtain the final MA detection results. We evaluated the method on the IDRiD_VOC dataset, which was collected from the open IDRiD dataset. The results show that our method effectively improves the average accuracy and sensitivity of MA detection.


2017 ◽  
Author(s):  
Javedkhan Y. Pathan ◽  
Dr.Pramod Patil

Sign in / Sign up

Export Citation Format

Share Document