scholarly journals An Improved Character Recognition Framework for Containers Based on DETR Algorithm

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4612
Author(s):  
Xiaofang Zhao ◽  
Peng Zhou ◽  
Ke Xu ◽  
Liyun Xiao

An improved DETR (detection with transformers) object detection framework is proposed to realize accurate detection and recognition of characters on shipping containers. ResneSt is used as a backbone network with split attention to extract features of different dimensions by multi-channel weight convolution operation, thus increasing the overall feature acquisition ability of the backbone. In addition, multi-scale location encoding is introduced on the basis of the original sinusoidal position encoding model, improving the sensitivity of input position information for the transformer structure. Compared with the original DETR framework, our model has higher confidence regarding accurate detection, with detection accuracy being improved by 2.6%. In a test of character detection and recognition with a self-built dataset, the overall accuracy can reach 98.6%, which meets the requirements of logistics information identification acquisition.

2021 ◽  
Vol 13 (12) ◽  
pp. 307
Author(s):  
Vijayakumar Varadarajan ◽  
Dweepna Garg ◽  
Ketan Kotecha

Deep learning is a relatively new branch of machine learning in which computers are taught to recognize patterns in massive volumes of data. It primarily describes learning at various levels of representation, which aids in understanding data that includes text, voice, and visuals. Convolutional neural networks have been used to solve challenges in computer vision, including object identification, image classification, semantic segmentation and a lot more. Object detection in videos involves confirming the presence of the object in the image or video and then locating it accurately for recognition. In the video, modelling techniques suffer from high computation and memory costs, which may decrease performance measures such as accuracy and efficiency to identify the object accurately in real-time. The current object detection technique based on a deep convolution neural network requires executing multilevel convolution and pooling operations on the entire image to extract deep semantic properties from it. For large objects, detection models can provide superior results; however, those models fail to detect the varying size of the objects that have low resolution and are greatly influenced by noise because the features after the repeated convolution operations of existing models do not fully represent the essential characteristics of the objects in real-time. With the help of a multi-scale anchor box, the proposed approach reported in this paper enhances the detection accuracy by extracting features at multiple convolution levels of the object. The major contribution of this paper is to design a model to understand better the parameters and the hyper-parameters which affect the detection and the recognition of objects of varying sizes and shapes, and to achieve real-time object detection and recognition speeds by improving accuracy. The proposed model has achieved 84.49 mAP on the test set of the Pascal VOC-2007 dataset at 11 FPS, which is comparatively better than other real-time object detection models.


2021 ◽  
Vol 14 (4) ◽  
pp. 11
Author(s):  
Kayode David Adedayo ◽  
Ayomide Oluwaseyi Agunloye

License plate detection and recognition are critical components of the development of a connected Intelligent transportation system, but are underused in developing countries because to the associated costs. Existing license plate detection and recognition systems with high accuracy require the usage of Graphical Processing Units (GPU), which may be difficult to come by in developing nations. Single stage detectors and commercial optical character recognition engines, on the other hand, are less computationally expensive and can achieve acceptable detection and recognition accuracy without the use of a GPU. In this work, a pretrained SSD model and a tesseract tessdata-fast traineddata were fine-tuned on a dataset of more than 2,000 images of vehicles with license plate. These models were combined with a unique image preprocessing algorithm for character segmentation and tested using a general-purpose personal computer on a new collection of 200 automobiles with license plate photos. On this testing set, the plate detection system achieved a detection accuracy of 99.5 % at an IOU threshold of 0.45 while the OCR engine successfully recognized all characters on 150 license plates, one character incorrectly on 24 license plates, and two or more incorrect characters on 26 license plates. The detection procedure took an average of 80 milliseconds, while the character segmentation and identification stages took an average of 95 milliseconds, resulting in an average processing time of 175 milliseconds per image, or 6 photos per second. The obtained results are suitable for real-time traffic applications.


2020 ◽  
Vol 2020 (1) ◽  
pp. 78-81
Author(s):  
Simone Zini ◽  
Simone Bianco ◽  
Raimondo Schettini

Rain removal from pictures taken under bad weather conditions is a challenging task that aims to improve the overall quality and visibility of a scene. The enhanced images usually constitute the input for subsequent Computer Vision tasks such as detection and classification. In this paper, we present a Convolutional Neural Network, based on the Pix2Pix model, for rain streaks removal from images, with specific interest in evaluating the results of the processing operation with respect to the Optical Character Recognition (OCR) task. In particular, we present a way to generate a rainy version of the Street View Text Dataset (R-SVTD) for "text detection and recognition" evaluation in bad weather conditions. Experimental results on this dataset show that our model is able to outperform the state of the art in terms of two commonly used image quality metrics, and that it is capable to improve the performances of an OCR model to detect and recognise text in the wild.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110113
Author(s):  
Xianghua Ma ◽  
Zhenkun Yang

Real-time object detection on mobile platforms is a crucial but challenging computer vision task. However, it is widely recognized that although the lightweight object detectors have a high detection speed, the detection accuracy is relatively low. In order to improve detecting accuracy, it is beneficial to extract complete multi-scale image features in visual cognitive tasks. Asymmetric convolutions have a useful quality, that is, they have different aspect ratios, which can be used to exact image features of objects, especially objects with multi-scale characteristics. In this paper, we exploit three different asymmetric convolutions in parallel and propose a new multi-scale asymmetric convolution unit, namely MAC block to enhance multi-scale representation ability of CNNs. In addition, MAC block can adaptively merge the features with different scales by allocating learnable weighted parameters to three different asymmetric convolution branches. The proposed MAC blocks can be inserted into the state-of-the-art backbone such as ResNet-50 to form a new multi-scale backbone network of object detectors. To evaluate the performance of MAC block, we conduct experiments on CIFAR-100, PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO 2014 datasets. Experimental results show that the detection precision can be greatly improved while a fast detection speed is guaranteed as well.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1426
Author(s):  
Chuanyang Liu ◽  
Yiquan Wu ◽  
Jingjing Liu ◽  
Jiaming Han

Insulator detection is an essential task for the safety and reliable operation of intelligent grids. Owing to insulator images including various background interferences, most traditional image-processing methods cannot achieve good performance. Some You Only Look Once (YOLO) networks are employed to meet the requirements of actual applications for insulator detection. To achieve a good trade-off among accuracy, running time, and memory storage, this work proposes the modified YOLO-tiny for insulator (MTI-YOLO) network for insulator detection in complex aerial images. First of all, composite insulator images are collected in common scenes and the “CCIN_detection” (Chinese Composite INsulator) dataset is constructed. Secondly, to improve the detection accuracy of different sizes of insulator, multi-scale feature detection headers, a structure of multi-scale feature fusion, and the spatial pyramid pooling (SPP) model are adopted to the MTI-YOLO network. Finally, the proposed MTI-YOLO network and the compared networks are trained and tested on the “CCIN_detection” dataset. The average precision (AP) of our proposed network is 17% and 9% higher than YOLO-tiny and YOLO-v2. Compared with YOLO-tiny and YOLO-v2, the running time of the proposed network is slightly higher. Furthermore, the memory usage of the proposed network is 25.6% and 38.9% lower than YOLO-v2 and YOLO-v3, respectively. Experimental results and analysis validate that the proposed network achieves good performance in both complex backgrounds and bright illumination conditions.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1820
Author(s):  
Xiaotao Shao ◽  
Qing Wang ◽  
Wei Yang ◽  
Yun Chen ◽  
Yi Xie ◽  
...  

The existing pedestrian detection algorithms cannot effectively extract features of heavily occluded targets which results in lower detection accuracy. To solve the heavy occlusion in crowds, we propose a multi-scale feature pyramid network based on ResNet (MFPN) to enhance the features of occluded targets and improve the detection accuracy. MFPN includes two modules, namely double feature pyramid network (FPN) integrated with ResNet (DFR) and repulsion loss of minimum (RLM). We propose the double FPN which improves the architecture to further enhance the semantic information and contours of occluded pedestrians, and provide a new way for feature extraction of occluded targets. The features extracted by our network can be more separated and clearer, especially those heavily occluded pedestrians. Repulsion loss is introduced to improve the loss function which can keep predicted boxes away from the ground truths of the unrelated targets. Experiments carried out on the public CrowdHuman dataset, we obtain 90.96% AP which yields the best performance, 5.16% AP gains compared to the FPN-ResNet50 baseline. Compared with the state-of-the-art works, the performance of the pedestrian detection system has been boosted with our method.


2019 ◽  
Vol 36 (9) ◽  
pp. 1863-1879 ◽  
Author(s):  
Dan Liberzon ◽  
Alexandru Vreme ◽  
Sagi Knobler ◽  
Itamar Bentwich

We report the development of a new method for accurate detection of breaking water waves that addresses the need for an accurate and cost-effective method that is independent of human decisions. The new detection method, which enables the detection of breakers using only surface elevation fluctuation measurements from a single wave gauge, supports the development of a new method for research relating to water waves and wind–wave interactions. According to the proposed method, detection is based on the use of the phase-time method to identify breaking-associated patterns in the instantaneous frequency variations of surface elevation fluctuations. A wavelet-based pattern recognition algorithm is devised to detect such patterns and provide accurate detection of breakers in the examined records. Validation and performance tests, conducted using both laboratory and open-sea data, including mechanically generated and wind-forced waves, are reported as well. These tests allow us to derive a set of parameters that assure high detection accuracy rates. The method is shown to be capable to achieve a positive detection rate exceeding 90%.


2019 ◽  
Vol 11 (2) ◽  
pp. 142 ◽  
Author(s):  
Wenping Ma ◽  
Hui Yang ◽  
Yue Wu ◽  
Yunta Xiong ◽  
Tao Hu ◽  
...  

In this paper, a novel change detection approach based on multi-grained cascade forest(gcForest) and multi-scale fusion for synthetic aperture radar (SAR) images is proposed. It detectsthe changed and unchanged areas of the images by using the well-trained gcForest. Most existingchange detection methods need to select the appropriate size of the image block. However, thesingle size image block only provides a part of the local information, and gcForest cannot achieve agood effect on the image representation learning ability. Therefore, the proposed approach choosesdifferent sizes of image blocks as the input of gcForest, which can learn more image characteristicsand reduce the influence of the local information of the image on the classification result as well.In addition, in order to improve the detection accuracy of those pixels whose gray value changesabruptly, the proposed approach combines gradient information of the difference image with theprobability map obtained from the well-trained gcForest. Therefore, the image edge information canbe enhanced and the accuracy of edge detection can be improved by extracting the image gradientinformation. Experiments on four data sets indicate that the proposed approach outperforms otherstate-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document