scholarly journals Measurements of Excavation Damaged Zone by Using Fiber Bragg Grating Stress Sensors

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5008
Author(s):  
Xiaorong Wan ◽  
Chuan Li ◽  
Zhengang Zhao ◽  
Dacheng Zhang ◽  
Yingna Li ◽  
...  

In this paper, a Fiber Bragg Grating (FBG) stress sensor is developed to measure the stress variation between the lower Excavation Damaged Zone (EDZ) and the upper undistributed rock. The disturbance brought by the environmental temperature can be differentially compensated with two FBGs mounted symmetrically on the spokes. Through finite element analysis, it can be known that the direct stress and shear stress are pointed at the angles of 45° and 60° on both sides of the coal mine roadway, respectively. The anchor ends of the sensors are installed into the upper undistributed rock and the bolt tails of the mine roadway with a depth of 700 m and fastened by nuts to secure the load sensing device on the surface of the rock. When the shallow foundation of surrounding rock is pressed and deformed toward the coal mining road, the structural modifications can be converted into the stress of rock bolt and the strain of spoke. Thus, the FBG mounted on the surface of the spoke receives the shift information of the Bragg wavelength. The monitoring results indicate that the FBG stress sensors are sensitive to the variation of the EDZ. During the blasting, the stress amplitude varies from 40.256 to 175.058 kPa, and the creep time changes from 21 to 74 min. The proposed method can be applied in the field of underground coal mines for safety condition monitoring of the EDZ and forecasting the coal mine roadway stability.

Author(s):  
Zhen-Gang Zhao ◽  
Yong-Jun Zhang ◽  
Chuan Li ◽  
Zhou Wan ◽  
Ying-Na Li ◽  
...  

2021 ◽  
Author(s):  
Rafał Czarny ◽  
Michał Malinowski ◽  
Mateusz Ćwiękała ◽  
Sławomir Olechowski ◽  
Zbigniew Isakow ◽  
...  

2016 ◽  
Vol 693 ◽  
pp. 1300-1307
Author(s):  
Qi Jiang ◽  
Teng Yun Guo

Mechanical vibration analysis is an important index to measure the running state of the electromechanical equipment. The vibration signals contain the information about the equipment running state. This paper studies and designs the vibration monitoring system based on fiber Bragg grating (FBG). Through the finite element analysis simulation, optimizes the sensor's structure, and uses the labview software to compile the corresponding vibration monitoring analysis software. Finally verifies the detection effect of the monitoring system, through the pulse signal and continuous signal dynamic experimental analysis. The result of the experimental analysis shows: this vibration monitoring system can monitor the vibration information and analyze vibration state effectively. It has the advantages of reducing the temperature interference and lateral disturbance, and detects the vibration of three direction at the same time. So it is feasible to monitor the electromechanical equipment.


2010 ◽  
Vol 148-149 ◽  
pp. 1639-1642
Author(s):  
Jian Feng Xie

The stresses and strains on the protected FBG and protected layer under varied temperature were analyzed in theory. In order to verify the theoretical analysis of stress and strain,a finite element analysis software(ANSYS) was used to simulate the stresses and strains on the protected FBG and protected layer. Both simulation and theoretical analysis are show that the strain and stress on protected layer in r direction decreases with the increasing of radius(r), while the strain and stress in direction increases with the increasing of radius(r) . The results of theoretical analysis matches the ones form simulations well.


2010 ◽  
Vol 636-637 ◽  
pp. 1548-1554 ◽  
Author(s):  
A.F. Silva ◽  
F. Gonçalves ◽  
L.A.A. Ferreira ◽  
F.M. Araújo ◽  
P.M. Mendes ◽  
...  

Optical sensors have hit their maturity and a new kind of systems is being developed. This paper deals with the development of a new sensing structure based on polymeric foils and optic fiber sensors, namely the Fiber Bragg Grating sensors. Sensor integration in polymeric foils, using industrial process is the proposed goal. To achieve this goal, Finite Element Analysis was used for prototype modeling and simulation. The model was subjected to loads and restraints in order to retrieve information about stress distribution and displacement of specific points. From the simulation was possible to predict the sections where the sensor should be positioned. A prototype was then fabricated using industrial processes. Tests indicate that the polymeric foil influence on the sensor performance may exist. However, the prototype was able of transferring the full deformation to the optical sensor. Moreover, the optical sensor, which is incorporated in the polymeric foil, is fully functional with high sensitivity, 0.6 picometer by microstrain, allowing deformation measurements, up to 1.2 millimeter.


2010 ◽  
Vol 148-149 ◽  
pp. 1634-1638
Author(s):  
Jian Feng Xie

After FBG was protected and embedded into cement mortar, the stresses and strains on the FBG ,protected layer and cement mortar under varied temperature were analyzed in theory. In order to verify the theoretical analysis of stress and strain,a finite element analysis software(ANSYS)was used to simulate the stresses and strains on the FBG ,protected layer and cement mortar. The results of theoretical analysis matches the ones form simulations well.


Author(s):  
Amelia G. Grobnic ◽  
Robert James ◽  
Ping Lu ◽  
Stephen J. Mihailov

We present a technique for the characterization and analysis of the thermal stress in the optical substrate of packaged photonic devices. This method allows optimization of the package geometry in order to improve the passive compensation of the thermal sensitivity of photonic devices. To the best of our knowledge, we report for the first time the use of strongly chirped, weakly apodized fiber Bragg grating (FBG) sensors to evaluate the stress distribution induced by the package in the planar lightwave circuit (PLC) substrate. We also evaluated the substrate thermal stress using finite element analysis (FEA). We investigated some of the package design parameters that can be used to control and tune the amount of stress that can be applied to the photonic device optical substrate. Our goal is to optimize the design of a package that applies tensile stress to the optical device to compensate unwanted effects due to ambient temperature variation.


Sign in / Sign up

Export Citation Format

Share Document