Characterization of Thermal Stress Phenomena Induced Into a Packaged Planar Lightwave Circuit Using Fiber Bragg Grating Sensors

Author(s):  
Amelia G. Grobnic ◽  
Robert James ◽  
Ping Lu ◽  
Stephen J. Mihailov

We present a technique for the characterization and analysis of the thermal stress in the optical substrate of packaged photonic devices. This method allows optimization of the package geometry in order to improve the passive compensation of the thermal sensitivity of photonic devices. To the best of our knowledge, we report for the first time the use of strongly chirped, weakly apodized fiber Bragg grating (FBG) sensors to evaluate the stress distribution induced by the package in the planar lightwave circuit (PLC) substrate. We also evaluated the substrate thermal stress using finite element analysis (FEA). We investigated some of the package design parameters that can be used to control and tune the amount of stress that can be applied to the photonic device optical substrate. Our goal is to optimize the design of a package that applies tensile stress to the optical device to compensate unwanted effects due to ambient temperature variation.

2016 ◽  
Vol 693 ◽  
pp. 1300-1307
Author(s):  
Qi Jiang ◽  
Teng Yun Guo

Mechanical vibration analysis is an important index to measure the running state of the electromechanical equipment. The vibration signals contain the information about the equipment running state. This paper studies and designs the vibration monitoring system based on fiber Bragg grating (FBG). Through the finite element analysis simulation, optimizes the sensor's structure, and uses the labview software to compile the corresponding vibration monitoring analysis software. Finally verifies the detection effect of the monitoring system, through the pulse signal and continuous signal dynamic experimental analysis. The result of the experimental analysis shows: this vibration monitoring system can monitor the vibration information and analyze vibration state effectively. It has the advantages of reducing the temperature interference and lateral disturbance, and detects the vibration of three direction at the same time. So it is feasible to monitor the electromechanical equipment.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001001-001009 ◽  
Author(s):  
Akihiro Horibe ◽  
Sayuri Kohara ◽  
Kuniaki Sueoka ◽  
Keiji Matsumoto ◽  
Yasumitsu Orii ◽  
...  

Low stress package design is one of the greatest challenges for the realization of reliable 3D integrated devices, since they are composed of elements susceptible to failures under high stress such as thin dies, metal through silicon vias (TSVs), and fine pitch interconnections. In variety of package components, an organic interposer is a key to obtain low cost modules with high density I/Os. However, the large mismatch in coefficient of thermal expansion (CTE) between silicon dies and organic laminates causes high stress in an organic package. The major parametric components in 3D devices are dies with /without Cu-TSVs, laminates, bumps, and underfill layers. Especially, the die thicknesses and underfill properties are ones of the parameters that give us some range to control as package design parameters. In general, the underfill material with a high modulus and a low CTE is effective in reducing the stress in solder interconnections between the Si die and the laminate. However, the filler content of underfill materials with such mechanical properties generally results in high viscosity. The use of high viscous materials in between silicon dies in 3D modules can degrade process ability in 3D integration. In this study, we show that the interchip underfills in 3D modules have a wider mechanical property window than in 2D modules even with fine pitch interconnections consisting mostly of intermetallic compounds (IMCs). Also the finite element analysis results show that the optimization of the structural or thermomechanical properties of organic laminates and interchip underfill contributes to reduction of stressing thinned silicon dies which may have some risks to the device performance.


2015 ◽  
Vol 9 (4) ◽  
Author(s):  
Davide Polito ◽  
Michele Arturo Caponero ◽  
Andrea Polimadei ◽  
Paola Saccomandi ◽  
Carlo Massaroni ◽  
...  

Temperature distribution monitoring in tissue undergoing laser ablation (LA) could be beneficial for improving treatment outcomes. Among several thermometric techniques employed in LA, fiber Bragg grating (FBG) sensors show valuable characteristics, although their sensitivity to strain entails measurement error for patient respiratory movements. Our work describes a solution to overcome this issue by housing an FBG in a surgical needle. The metrological properties of the probes were assessed in terms of thermal sensitivity (0.027 nm °C−1 versus 0.010 nm °C−1 for epoxy liquid encapsulated probe and thermal paste one, respectively) and response time (about 100 ms) and compared with properties of nonencapsulated FBG (sensitivity of 0.010 nm °C−1, response time of 43 ms). The error due to the strain caused by liver movements, simulating a typical respiratory pattern, was assessed: the strain induces a probes output error less than 0.5 °C, which is negligible when compared to the response of nonencapsulated FBG (2.5 °C). The metallic needle entails a measurement error, called artifact, due to direct absorption of the laser radiation. The analysis of the artifact was performed by employing the probes for temperature monitoring on liver undergoing LA. Experiments were performed at two laser powers (i.e., 2 W and 4 W) and at nine distances between the probes and the laser applicator. The artifact decreases with the distance and increases with the power: it exceeds 10 °C at 4 W, when the encapsulated probes are placed at 3.6 mm and 0 deg from the applicator, and it is lower than 1 °C for distance higher than 5 mm and angle higher than 30 deg.


2010 ◽  
Vol 148-149 ◽  
pp. 1639-1642
Author(s):  
Jian Feng Xie

The stresses and strains on the protected FBG and protected layer under varied temperature were analyzed in theory. In order to verify the theoretical analysis of stress and strain,a finite element analysis software(ANSYS) was used to simulate the stresses and strains on the protected FBG and protected layer. Both simulation and theoretical analysis are show that the strain and stress on protected layer in r direction decreases with the increasing of radius(r), while the strain and stress in direction increases with the increasing of radius(r) . The results of theoretical analysis matches the ones form simulations well.


2010 ◽  
Vol 636-637 ◽  
pp. 1548-1554 ◽  
Author(s):  
A.F. Silva ◽  
F. Gonçalves ◽  
L.A.A. Ferreira ◽  
F.M. Araújo ◽  
P.M. Mendes ◽  
...  

Optical sensors have hit their maturity and a new kind of systems is being developed. This paper deals with the development of a new sensing structure based on polymeric foils and optic fiber sensors, namely the Fiber Bragg Grating sensors. Sensor integration in polymeric foils, using industrial process is the proposed goal. To achieve this goal, Finite Element Analysis was used for prototype modeling and simulation. The model was subjected to loads and restraints in order to retrieve information about stress distribution and displacement of specific points. From the simulation was possible to predict the sections where the sensor should be positioned. A prototype was then fabricated using industrial processes. Tests indicate that the polymeric foil influence on the sensor performance may exist. However, the prototype was able of transferring the full deformation to the optical sensor. Moreover, the optical sensor, which is incorporated in the polymeric foil, is fully functional with high sensitivity, 0.6 picometer by microstrain, allowing deformation measurements, up to 1.2 millimeter.


2010 ◽  
Vol 148-149 ◽  
pp. 1634-1638
Author(s):  
Jian Feng Xie

After FBG was protected and embedded into cement mortar, the stresses and strains on the FBG ,protected layer and cement mortar under varied temperature were analyzed in theory. In order to verify the theoretical analysis of stress and strain,a finite element analysis software(ANSYS)was used to simulate the stresses and strains on the FBG ,protected layer and cement mortar. The results of theoretical analysis matches the ones form simulations well.


2015 ◽  
Vol 40 (5) ◽  
pp. 748 ◽  
Author(s):  
Man-Hong Lai ◽  
Kok-Sing Lim ◽  
Dinusha S. Gunawardena ◽  
Hang-Zhou Yang ◽  
Wu-Yi Chong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document