scholarly journals Plate Waves Scattering Analysis and Active Damage Detection

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5458
Author(s):  
Tai-Ho Yu

This study investigates and evaluates the technology of using plate waves to detect the locations and sizes of circular holes and cracks in plates. Piezoelectric ceramic discs surface-mounted on both sides of an aluminum alloy plate were used as narrow-frequency plate wave actuators and sensors, and the antisymmetric plate wave signal was analyzed by wavelet transform in the time-frequency domain. The damage location and frequency spectrum characteristics were identified by the wave through time-of-flight difference and signal analysis of the damage scattered wave group. The plate wave signal of the damaged plate included the scattered wave signal and the plate wave signal transmitted directly between the piezoelectric discs. Under ideal conditions, the plate wave signal indicating damage can be obtained by subtracting the plate wave signal in a plate without damage from the plate wave signal scattered from actuators to sensors. This study established an optimization program based on the simplex algorithm to inversely calculate the location of the plate damage. The developed damage location objective function has a unique global minimum value that can ensure the accuracy of the damage location calculation, and good results were obtained in experiments. The spectral characteristics of the scattered plate wave were related to the type, size, wave propagation path, and incident angle of the damage. Numerical analyses of scattered spectra for various damages are needed as references to compare with experimental results in the future.

2012 ◽  
Vol 433-440 ◽  
pp. 2611-2618
Author(s):  
Zhen Hua Tian ◽  
Hong Yuan Li ◽  
Hong Xu

The propagation of scattering Lamb wave in plate was simulated using transient dynamic analysis in ANSYS. In order to extract the characteristic information of received signal for damage identification, the short time Fourier transform based on time-frequency analysis was utilized, and then the energy distribution and envelop of received signal were obtained. Based on the displacement contour of simulation and energy distribution, the propagation of scattering wave in plate with a through hole was examined. Also, a mathematic relationship between damage location and scattering signal was developed, with the help of wave propagation path through actuator, damage and sensor. A nonlinear optimization method was applied on the mathematic relationship to obtain the damage location. The damage identification method using scattering Lamb wave was therefore established.


2011 ◽  
Vol 383-390 ◽  
pp. 7362-7368
Author(s):  
Zhen Hua Tian ◽  
Hong Yuan Li ◽  
Hong Xu

The propagation of scattering Lamb wave in plate was simulated using transient dynamic analysis in ANSYS. In order to extract the characteristic information of received signal for damage identification, the short time Fourier transform based on time-frequency analysis was utilized, and then the energy distribution and envelop of received signal were obtained. Based on the displacement contour of simulation and energy distribution, the propagation of scattering wave in plate with a through hole was examined. Also, a mathematic relationship between damage location and scattering signal was developed, with the help of wave propagation path through actuator, damage and sensor. A nonlinear optimization method was applied on the mathematic relationship to obtain the damage location. The damage identification method using scattering Lamb wave was therefore established.


1970 ◽  
Vol 60 (5) ◽  
pp. 1547-1559 ◽  
Author(s):  
Bruce M. Douglas ◽  
Alan Ryall ◽  
Ray Williams

Abstract Fourier amplitude spectra were computed for 40 central Nevada microearthquakes, selected to consider, independently, effects of azimuth and distance from known sources. Spectra were averaged for groups of events to eliminate peculiarities of individual records and emphasize group characteristics. Spectral characteristics did not behave systematically as a function of azimuth from the recording site to the source, but peak spectral frequency was found to correlate strongly with event magnitude and to some degree also with focal distance. These preliminary results suggest that recordings of small earthquakes and microearthquakes can be used to provide detailed information on the character of seismic signals related to properties of the source and propagation path.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Changhai Lin ◽  
Sifeng Liu ◽  
Zhigeng Fang ◽  
Yingjie Yang

PurposeThe purpose of this paper is to analyze the spectral characteristics of moving average operator and to propose a novel time-frequency hybrid sequence operator.Design/methodology/approachFirstly, the complex data is converted into frequency domain data by Fourier transform. An appropriate frequency domain operator is constructed to eliminate the impact of disturbance. Then, the inverse Fourier transform transforms the frequency domain data in which the disturbance is removed, into time domain data. Finally, an appropriate moving average operator of N items is selected based on spectral characteristics to eliminate the influence of periodic factors and noise.FindingsThrough the spectrum analysis of the real-time data sensed and recorded by microwave sensors, the spectral characteristics and the ranges of information, noise and shock disturbance factors in the data can be clarified.Practical implicationsThe real-time data analysis results for a drug component monitoring show that the hybrid sequence operator has a good effect on suppressing disturbances, periodic factors and noise implied in the data.Originality/valueFirstly, the spectral analysis of moving average operator and the novel time-frequency hybrid sequence operator were presented in this paper. For complex data, the ideal effect is difficult to achieve by applying the frequency domain operator or time domain operator alone. The more satisfactory results can be obtained by time-frequency hybrid sequence operator.


Author(s):  
Eric B. Flynn ◽  
Michael D. Todd ◽  
Paul D. Wilcox ◽  
Bruce W. Drinkwater ◽  
Anthony J. Croxford

This paper describes the formulation of a maximum-likelihood estimate of damage location for guided-wave structural health monitoring (GWSHM) using a minimally informed, Rayleigh-based statistical model of scattered wave measurements. Also introduced are two statistics-based methods for evaluating localization performance: the localization probability density function estimate and the localizer operating characteristic curve. Using an ensemble of measurements from an instrumented plate with stiffening stringers, the statistical performance of the so-called Rayleigh maximum-likelihood estimate (RMLE) is compared with that of seven previously reported localization methods. The RMLE proves superior in all test cases, and is particularly effective in localizing damage using very sparse arrays consisting of as few as three transducers. The probabilistic basis used for modelling the complicated wave scattering behaviour makes the algorithm especially suited for localizing damage in complicated structures, with the potential for improved performance with increasing structure complexity.


Author(s):  
Xiyu Liu ◽  
Yueming Tang

The weld is a typical dissimilar metal weld (DMW). As its large grain, anisotropism and narrow moving space for probe, it is difficult for practical ultrasonic testing. On the basis of studying weld structure, this thesis firstly discusses the sonic propagation path of different incident angle, and then calculates the reflectivity and transmittivity, from which the ratio-angle curve will be plotted, finally simulates & analyzes the ultrasonic testing with software CIVA. The analysis results show that proper selection of the incident angle will provide suitable incident angle range for the following experiments. With the CIVA analysis results, it will also provide references for choosing proper probe parameters and relative technics for following research.


2021 ◽  
Vol 71 (6) ◽  
pp. 737-747
Author(s):  
Hussein Bassindowa ◽  
Bakhtier Farouk ◽  
Steven B. Segletes

A computational study of a projectile (either 2024 aluminum or TiAl6V4 titanium alloy) impacting a plate (either titanium alloy or aluminum) is presented in this paper. Projectile velocity (ranging from 250 m/s to 1500 m/s) with varying impact angles are considered. The presence of ricochet (if any) is identified over the ranges of the projectile velocity and impact angle considered. For the cases where ricochet is identified, the ricochet angle and velocity are predicted as functions of the incident angle and the incident velocity. The numerical results are compared with an analytical solution of the ricochet problem. The analytical solutions are from a model developed to predict the ballistic ricochet of a projectile (projectile) penetrator. The dynamics and the deformation of an aluminum (or a titanium alloy) projectile impacting on a finite thickness titanium alloy (or aluminum) plate are simulated. The current work is interesting in that it looks in the field of ballistics of different material combinations than are traditionally studied. The present simulations based on detailed material models for the aluminum and the titanium alloy and the impact physics modelling features in the LS-DYNA code provide interesting details regarding the projectile/plate deformations and post-impact projectile shape and geometry. The present results indicate that for no cases (for specified incoming velocities and impact angles considered) can an aluminum projectile penetrate a titanium alloy plate. The ricochet ‘mode predictions ‘obtained from the present simulations agree well with the ricochet ‘mode predictions’ given in an analytical model.


Sign in / Sign up

Export Citation Format

Share Document