Simulation Study of Damage Identification Method Based on Lamb Wave Scattering in Aluminium Plate

2012 ◽  
Vol 433-440 ◽  
pp. 2611-2618
Author(s):  
Zhen Hua Tian ◽  
Hong Yuan Li ◽  
Hong Xu

The propagation of scattering Lamb wave in plate was simulated using transient dynamic analysis in ANSYS. In order to extract the characteristic information of received signal for damage identification, the short time Fourier transform based on time-frequency analysis was utilized, and then the energy distribution and envelop of received signal were obtained. Based on the displacement contour of simulation and energy distribution, the propagation of scattering wave in plate with a through hole was examined. Also, a mathematic relationship between damage location and scattering signal was developed, with the help of wave propagation path through actuator, damage and sensor. A nonlinear optimization method was applied on the mathematic relationship to obtain the damage location. The damage identification method using scattering Lamb wave was therefore established.

2011 ◽  
Vol 383-390 ◽  
pp. 7362-7368
Author(s):  
Zhen Hua Tian ◽  
Hong Yuan Li ◽  
Hong Xu

The propagation of scattering Lamb wave in plate was simulated using transient dynamic analysis in ANSYS. In order to extract the characteristic information of received signal for damage identification, the short time Fourier transform based on time-frequency analysis was utilized, and then the energy distribution and envelop of received signal were obtained. Based on the displacement contour of simulation and energy distribution, the propagation of scattering wave in plate with a through hole was examined. Also, a mathematic relationship between damage location and scattering signal was developed, with the help of wave propagation path through actuator, damage and sensor. A nonlinear optimization method was applied on the mathematic relationship to obtain the damage location. The damage identification method using scattering Lamb wave was therefore established.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2745 ◽  
Author(s):  
Ruihua Li ◽  
Hao Li ◽  
Bo Hu

Large generators are the principal pieces of equipment in power systems, and their operation reliability critically depends on the stator insulation. Damages in stator insulation will gradually lead to the failure and breakdown of generator. Due to the advantages of Lamb waves in Structural health monitoring (SHM), in this study, a distributed piezoelectric (PZT) sensor system and hybrid features of the Lamb waves are introduced to identify stator insulation damage of large generator. A hierarchical probability damage-imaging (PDI) algorithm is proposed to tackle the material inhomogeneity and anisotropy of the stator insulation. The proposed method includes three steps: global detection using correlation coefficients, local detection using Time of flight (ToF) along with the amplitude of damage-scattered Lamb wave, and final images fusion. Wavelet Transform was used to extract the ToF of Lamb wave in terms of the time-frequency domain. Finite Element Modeling (FEM) simulation and experimental work were carried out to identify four typical stator insulation damages for validation, including inner void, inner delamination, puncture, and crack. Results show that the proposed method can precisely identify the location of stator insulation damage, and the reconstruction image can be used to identify the size of stator insulation damage.


2020 ◽  
pp. 147592172094500
Author(s):  
Haode Huo ◽  
Jingjing He ◽  
Xuefei Guan

This study presents a novel method for composite damage identification using Lamb wave. A probabilistic integration of the elliptical loci method and the RAPID (reconstruction algorithm for probabilistic inspection of defects) in a Bayesian framework is proposed. The proposed method allows for the incorporation of multiple damage sensitive features in a rational manner to improve the reliability and robustness for a given array of sensors. Numerical studies are performed to verify the effectiveness of the proposed method and to compare its accuracy with existing methods. Experimental investigation using a realistic composite plate is made to further validate the proposed method. The influence of damage location and the number of participating sensors on the performance of the proposed method is discussed. Results indicate that the proposed method yields more accurate and reliable results comparing with existing methods.


2012 ◽  
Vol 622-623 ◽  
pp. 1389-1395
Author(s):  
R. Nishanth ◽  
K. Lingadurai ◽  
V. Malolan ◽  
Gowrishankar Wuriti ◽  
M.R.M. Babu

SHM is defined as “an emerging technology that can be defined as continuous, autonomous, real time, in-service monitoring of the physical condition of a structure by means of embedded or attached sensors with minimum manual intervention” .SHM provides the ability of a system to detect adverse changes within a system’s structure to enhance reliability and reduce maintenance costs. There are different Non-Destructive techniques like acoustic emission, ultrasonic, acousto-ultrasonic, guided ultrasonic waves or Lamb waves which are nowadays investigated for the development of an efficient and user-friendly damage identification system. This paper deals with the latter which is based on Lamb wave propagation. It has been developed especially for distinguishing different kinds of damages. The Lamb wave-based active SHM method uses piezoelectric (PZT) sensors to transmit and receive Lamb waves in a thin Aluminum plate. The Lamb wave modes (AO &SO) travel into the structure and are reflected by the structural boundaries, discontinuities, and damage. By studying their propagation and reflection, the presence of defect in the structure is determined. Laboratory level experiments have been carried out on thin Aluminum plates with angular, horizontal and vertical defect. The obtained waveform is filtered to avoid unwanted noise & disturbances using Savitzky-Golay filtering. The filtered waveforms are compared to differentiate the defects. Short Time Fourier Transform has been carried out on the acquired waveform. This study provides significant insight into the problem of identifying localized damages in the structure using PZT and dispersion of signal after they interact with different types of damage. Those small defects like the horizontal one that may be nearly missed in time domain analysis can also be clearly identified in the STFT analysis. Moreover the occurrence of So mode is also clearly seen. Thus, Lamb waves generated by PZT sensors and time-frequency analysis techniques could be used effectively for damage detection in aluminum plate. This study has given a complete idea of the working and the basic requirements of SHM system.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5458
Author(s):  
Tai-Ho Yu

This study investigates and evaluates the technology of using plate waves to detect the locations and sizes of circular holes and cracks in plates. Piezoelectric ceramic discs surface-mounted on both sides of an aluminum alloy plate were used as narrow-frequency plate wave actuators and sensors, and the antisymmetric plate wave signal was analyzed by wavelet transform in the time-frequency domain. The damage location and frequency spectrum characteristics were identified by the wave through time-of-flight difference and signal analysis of the damage scattered wave group. The plate wave signal of the damaged plate included the scattered wave signal and the plate wave signal transmitted directly between the piezoelectric discs. Under ideal conditions, the plate wave signal indicating damage can be obtained by subtracting the plate wave signal in a plate without damage from the plate wave signal scattered from actuators to sensors. This study established an optimization program based on the simplex algorithm to inversely calculate the location of the plate damage. The developed damage location objective function has a unique global minimum value that can ensure the accuracy of the damage location calculation, and good results were obtained in experiments. The spectral characteristics of the scattered plate wave were related to the type, size, wave propagation path, and incident angle of the damage. Numerical analyses of scattered spectra for various damages are needed as references to compare with experimental results in the future.


2013 ◽  
Vol 347-350 ◽  
pp. 107-110
Author(s):  
Sen Wu ◽  
Bin Wang ◽  
Hai Hua Zhang

In view of the defects of the traditional damage identification method based on vibration,the damage identification method based on vibration transmissibility is put forward. The feasibility of the vibration transmissibility applied to structural damage identification is analyzed by the numerical simulation experiment of a cantilever beam, the analysis results show that, vibration transmissibility contains the structure damage severity, damage location and other useful information, and all the information is favor of the damage identification.


2014 ◽  
Vol 1014 ◽  
pp. 3-8
Author(s):  
Zai Lin Yang ◽  
Hamada M. Elgamal ◽  
Jian Wei Zhang

With advantages including capability of propagation over a significant distance and high sensitivity to abnormalities and inhomogeneity near the wave propagation path, Lamb waves can be energised to disseminate in a structure and any changes in material properties or structural geometry created by a discontinuity, boundary or structural damage can be identified by examining the scattered wave signals. This paper presents an overview of the Lamb-wave-based damage identification in laminated composite plates including the formulation of lamb waves in an isotropic plate.


2013 ◽  
Vol 389 ◽  
pp. 881-886
Author(s):  
Ya Jie Sun ◽  
Yong Hong Zhang ◽  
Cheng Shan Qian ◽  
Zi Jia Zhang ◽  
Qi Wang

The Lamb wave phased array theory is utilized to analysis the damage scattered signals to identify the structure defect. The damage scattered signals are gotten by comparing the health signals with the damage signals. Phased array theory based structural health monitoring can scan the structure in a certain range of 0°~180° by controlling the time delay of the excitation signals and the response signals. The processed signals in monitoring direction is shown on 3-D imaging to express the damage location in the structure. The method is verified by the experiment on the composite structure and the result shows that the Lamb wave phased array method can detect the damage in the composite structure and the 3-D image clearly displays the structure damage location.


2021 ◽  
Author(s):  
Yunfeng Zou ◽  
Xuandong Lu ◽  
Jinsong Yang ◽  
Xuhui He ◽  
Tiantian Wang

Abstract Structural damage identification technology is of great significance to improve the reliability and safety of civil structures and has attracted much attention in the study of structural health monitoring. In this paper, a novelty structural damage identification method based on the transmissibility in time domain is proposed. The method takes the discrepancy of transmissibility of structure response in time domain before and after damage as the basis of finite element model modification. The damage location and damage degree are obtained through iteration by minimizing the difference between the measurements at gauge locations and the reconstruction response extrapolated by FE model. Taking the advantage of the response reconstruction method based on empirical mode decomposition, the damage information is possible to obtain in the absence of prior knowledge on external excitation information. Moreover, this method is carried out in the time domain, without the need to identify the modal parameters and perform time-frequency analysis, which simplicity ensures the high efficiency of damage identification. The effectiveness and accuracy of the proposed method are studied by simulation, including reconstruction error and measurement noise. The identification results demonstrate that the proposed structural damage identification method improves the calculation effectiveness considerably and ensures the identification accuracy.


Sign in / Sign up

Export Citation Format

Share Document