scholarly journals Design and Realization of an UHF Frequency Reconfigurable Antenna for Hybrid Connectivity LPWAN and LEO Satellite Networks

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5466
Author(s):  
Abdellatif Bouyedda ◽  
Bruno Barelaud ◽  
Laurent Gineste

UHF satellite communication for Internet of Things (IoT) technology is rapidly emerging in monitoring applications as it offers the possibility of lower-costs and global coverage. At the present time, Low Power Wide Area Network (LPWAN) solutions offer low power consumption, but still suffer from white zones. In this paper, the authors propose an UHF frequency reconfigurable Antenna for hybrid connectivity LoRaWAN (at 868 MHz) and UHF satellite communication (Tx at 401 MHz and Rx at 466 MHz) with the Low Earth Orbit (LEO) Kineis constellation. The antenna is based on a meandered line structure loaded with lumped components and a PIN diode to control the antenna resonant frequencies. It resonates at 401 and 868 MHz when the PIN diode is forward-biased (ON state) and 466 MHz in reverse-biased configuration (OFF state). The antenna is designed inside the enclosure with the presence of all the parts of the connected device. The results of EM simulations and parametric studies on the values of the lumped components and the PIN diode equivalent model, which are obtained with HFSS, are presented. The antenna is prototyped and has dimensions of 78 mm × 88 mm × 1.6 mm. The paper proposes a fast and practical method to reduce time development and compensate the frequency shift between measurement and simulation.

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 900 ◽  
Author(s):  
Tayyaba Khan ◽  
MuhibUr Rahman ◽  
Adeel Akram ◽  
Yasar Amin ◽  
Hannu Tenhunen

A novel, cedar-shaped, coplanar waveguide-fed frequency reconfigurable antenna is proposed. The presented antenna uses low-cost FR4 substrate with a thickness of 1.6 mm. Four PIN diodes are inserted on the antenna surface to variate the current distribution and alter the resonant frequencies with different combinations of switches. The proposed antenna is fabricated and measured for all states, and a good agreement is seen between measured and simulated results. This antenna resonates within the range of 2 GHz to 10 GHz, covering the major wireless applications of aviation service, wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), long distance radio telecommunications, and X-band satellite communication. The proposed antenna works resourcefully with reasonable gain, significant bandwidth, directivity, and reflection coefficient. The proposed multiband reconfigurable antenna will pave the way for future wireless communications including WLAN, WiMAX, and possibly fifth-generation (5G) communication.


Author(s):  
Taghi Shahgholi ◽  
Amir Sheikhahmadi ◽  
Keyhan Khamforoosh ◽  
Sadoon Azizi

AbstractIncreased number of the vehicles on the streets around the world has led to several problems including traffic congestion, emissions, and huge fuel consumption in many regions. With advances in wireless and traffic technologies, the Intelligent Transportation System (ITS) has been introduced as a viable solution for solving these problems by implementing more efficient use of the current infrastructures. In this paper, the possibility of using cellular-based Low-Power Wide-Area Network (LPWAN) communications, LTE-M and NB-IoT, for ITS applications has been investigated. LTE-M and NB-IoT are designed to provide long range, low power and low cost communication infrastructures and can be a promising option which has the potential to be employed immediately in real systems. In this paper, we have proposed an architecture to employ the LPWAN as a backhaul infrastructure for ITS and to understand the feasibility of the proposed model, two applications with low and high delay requirements have been examined: road traffic monitoring and emergency vehicle management. Then, the performance of using LTE-M and NB-IoT for providing backhaul communication infrastructure has been evaluated in a realistic simulation environment and compared for these two scenarios in terms of end-to-end latency per user. Simulation of Urban MObility has been used for realistic traffic generation and a Python-based program has been developed for evaluation of the communication system. The simulation results demonstrate the feasibility of using LPWAN for ITS backhaul infrastructure mostly in favor of the LTE-M over NB-IoT.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Nur-A-Alam ◽  
Mominul Ahsan ◽  
Md. Abdul Based ◽  
Julfikar Haider ◽  
Eduardo M. G. Rodrigues

In the era of Industry 4.0, remote monitoring and controlling appliance/equipment at home, institute, or industry from a long distance with low power consumption remains challenging. At present, some smart phones are being actively used to control appliances at home or institute using Internet of Things (IoT) systems. This paper presents a novel smart automation system using long range (LoRa) technology. The proposed LoRa based system consists of wireless communication system and different types of sensors, operated by a smart phone application and powered by a low-power battery, with an operating range of 3–12 km distance. The system established a connection between an android phone and a microprocessor (ESP32) through Wi-Fi at the sender end. The ESP32 module was connected to a LoRa module. At the receiver end, an ESP32 module and LoRa module without Wi-Fi was employed. Wide Area Network (WAN) communication protocol was used on the LoRa module to provide switching functionality of the targeted area. The performance of the system was evaluated by three real-life case studies through measuring environmental temperature and humidity, detecting fire, and controlling the switching functionality of appliances. Obtaining correct environmental data, fire detection with 90% accuracy, and switching functionality with 92.33% accuracy at a distance up to 12 km demonstrated the high performance of the system. The proposed smart system with modular design proved to be highly effective in controlling and monitoring home appliances from a longer distance with relatively lower power consumption.


2020 ◽  
Vol 10 (2) ◽  
pp. 15 ◽  
Author(s):  
Mattia Ragnoli ◽  
Gianluca Barile ◽  
Alfiero Leoni ◽  
Giuseppe Ferri ◽  
Vincenzo Stornelli

The development of Internet of Things (IoT) systems is a rapidly evolving scenario, thanks also to newly available low-power wide area network (LPWAN) technologies that are utilized for environmental monitoring purposes and to prevent potentially dangerous situations with smaller and less expensive physical structures. This paper presents the design, implementation and test results of a flood-monitoring system based on LoRa technology, tested in a real-world scenario. The entire system is designed in a modular perspective, in order to have the capability to interface different types of sensors without the need for making significant hardware changes to the proposed node architecture. The information is stored through a device equipped with sensors and a microcontroller, connected to a LoRa wireless module for sending data, which are then processed and stored through a web structure where the alarm function is implemented in case of flooding.


2019 ◽  
Vol 11 (3) ◽  
pp. 57 ◽  
Author(s):  
Lorenzo Vangelista ◽  
Marco Centenaro

The low-power wide-area network (LPWAN) paradigm is gradually gaining market acceptance. In particular, three prominent LPWAN technologies are emerging at the moment: LoRaWAN™ and SigFox™, which operate on unlicensed frequency bands, and NB-IoT, operating on licensed frequency bands. This paper deals with LoRaWAN™, and has the aim of describing a particularly interesting feature provided by the latest LoRaWAN™ specification—often neglected in the literature—i.e., the roaming capability between different operators of LoRaWAN™ networks, across the same country or even different countries. Recalling that LoRaWAN™ devices do not have a subscriber identification module (SIM) like cellular network terminals, at a first glance the implementation of roaming in LoRaWAN™ networks could seem intricate. The contribution of this paper consists in explaining the principles behind the implementation of a global LoRaWAN network, with particular focus on how to cope with the lack of the SIM in the architecture and how to realize roaming.


Author(s):  
Paulo Renato Câmera da Silva ◽  
Herman Augusto Lepikson ◽  
Marcus Vinícius Ivo da Silva ◽  
Rafael Barbosa Mendes

Author(s):  
Hongqiang Li ◽  
Dongyan Zhao ◽  
Xiaoke Tang ◽  
Jie Gan ◽  
Xu Zhao ◽  
...  

With the rapid development of IoT technology in recent years, higher requirements have been put forward for wireless communication technology. Low Power Wide Area Network (LPWAN) technology is emerging rapidly, the technology is characterized by low power consumption, low bandwidth, long-distance, and a large number of connections, and is specifically designed for Internet of Things applications. LoRa (Low Power Long Range Transceiver), as a typical representative of LPWAN technology, has been widely concerned and studied. This paper analyzes the performance of LoRa modulation in the tree topology network and analyzes the performance of LoRa modulation in the imperfect environment for point-to-point communication and multipoint-to-point communication. From theoretical analysis and performance simulation, it can be seen that the influence of frequency offset or multipath fading on LoRa signal is very obvious. However, when LoRa modulation is used for networking, multi-user interference will be introduced. Under the influence of many imperfect factors, the signal receiver performance of LoRa modulation will be difficult to guarantee. Because of these effects, Coordinated Multiple Points based on Timing Delay (DCoMP) is presented. Multiple nodes close to each other send the same data to the target node. Due to the inaccurate synchronization between nodes, there will be a certain relative delay when sending signals to the same target node. After the receiving node combines the signals of multiple nodes according to different relative delays, the reception performance of the signals can be improved. At the same time, the cooperative node can also actively adjust the signal sending time to improve the reception performance of the receiving node signal merging algorithm. LoRa modulation, by using DCoMP transmission, improves the reception of signals and thus the overall capacity of the system. Through the analysis of multipoint communication and single point communication, this paper is of great help to LoRa network deployment.


Sign in / Sign up

Export Citation Format

Share Document