scholarly journals Removal of ECG Artifacts Affects Respiratory Muscle Fatigue Detection (A Simulation Study)

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5663
Author(s):  
Lorenz Kahl ◽  
Ulrich G. Hofmann

This work investigates elimination methods for cardiogenic artifacts in respiratory surface electromyographic (sEMG) signals and compares their performance with respect to subsequent fatigue detection with different fatigue algorithms. The analysis is based on artificially constructed test signals featuring a clearly defined expected fatigue level. Test signals are additively constructed with different proportions from sEMG and electrocardiographic (ECG) signals. Cardiogenic artifacts are eliminated by high-pass filtering (HP), template subtraction (TS), a newly introduced two-step approach (TSWD) consisting of template subtraction and a wavelet-based damping step and a pure wavelet-based damping (DSO). Each method is additionally combined with the exclusion of QRS segments (gating). Fatigue is subsequently quantified with mean frequency (MNF), spectral moments ratio of order five (SMR5) and fuzzy approximate entropy (fApEn). Different combinations of artifact elimination methods and fatigue detection algorithms are tested with respect to their ability to deliver invariant results despite increasing ECG contamination. Both DSO and TSWD artifact elimination methods displayed promising results regarding the intermediate, “cleaned” EMG signal. However, only the TSWD method enabled superior results in the subsequent fatigue detection across different levels of artifact contamination and evaluation criteria. SMR5 could be determined as the best fatigue detection algorithm. This study proposes a signal processing chain to determine neuromuscular fatigue despite the presence of cardiogenic artifacts. The results furthermore underline the importance of selecting a combination of algorithms that play well together to remove cardiogenic artifacts and to detect fatigue. This investigation provides guidance for clinical studies to select optimal signal processing to detect fatigue from respiratory sEMG signals.

Author(s):  
WANSONG XU ◽  
TIANWU CHEN ◽  
FANYU DU

Objective: The detection of QRS complexes is an important part of computer-aided analysis of electrocardiogram (ECG). However, most of the existing detection algorithms are mainly for single-lead ECG signals, which requires high quality of signal. If the signal quality decreases suddenly due to some interference, then the current algorithm is easy to cause misjudgment or missed detection. To improve the detection ability of QRS complexes under sudden interference, we study the QRS complexes information on multiple leads in-depth, and propose a two-lead joint detection algorithm of QRS complexes. Methods: Firstly, the suspected QRS complexes are screened on the main lead. For the suspected QRS complexes with low confidence and the complexes that may be missed, further accurate detection and joint judgment shall be carried out at the corresponding position of the auxiliary lead. At the same time, the adaptive threshold adjustment algorithm and backtracking mechanism are used to modify the detection results. Results: The proposed detection algorithm is validated using 48 ECG records of the MIT-BIH arrhythmia database, and achieves average detection accuracy of 99.71%, sensitivity of 99.88% and positive predictivity of 99.81%. Conclusion: The proposed algorithm has high accuracy, which can effectively deal with the sudden interference of ECG signal. Meanwhile, the algorithm requires small amount of computation, and can be embedded into hardware for real-time detection.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xianyan Dai ◽  
Shangbin Li

Today, while people’s satisfaction with materials is high, the pursuit of health has begun and sports are becoming increasingly important. Volleyball is a good physical and mental exercise, which helps improve the health of the body. However, excessive exercise usually leads to muscle strain and more serious accidents. Therefore, how to effectively prevent excessive fatigue and sports injuries becomes more and more important. In the past, some methods of exercise fatigue detection were mostly self-assessment through some indicators, which lacked real-time and accuracy. With the advancement of smart technology, in order to better detect sports fatigue, smart wearable technology and equipment are used in volleyball. Firstly, surface electromyography signals (sEMG) are collected through wearable technology and equipment. Secondly, the signal is preprocessed to extract features that are conducive to exercise fatigue assessment. Finally, a motion fatigue detection algorithm is designed to identify and classify features and evaluate the motion status in real-time. The simulation results show that it is feasible to collect ECG signals and EMG signals to detect exercise fatigue. The algorithm has good recognition performance, can evaluate exercise conditions in real-time, and prevent fatigue and injury during exercise.


2018 ◽  
Vol 11 (1) ◽  
pp. 208-230 ◽  
Author(s):  
René Yáñez de la Rivera ◽  
Moisés Soto-Bajo ◽  
Andrés Fraguela-Collar

Background:The estimation of fiducial points is specially important in the analysis and automatic diagnose of Electrocardiographic (ECG) signals.Objective:A new algorithm which could be easily implemented is presented to accomplish this task.Methods:Its methodology is rather simple, and starts from some ideas available in the literature combined with new approachs provided by the authors. First, aQRScomplex detection algorithm is presented based on the computation of energy maxima in ECG signals which allow the measurement of cardiac frequency (in beats per minute) and the estimation of R peaks temporal positions (in number of samples). From these ones, an estimation of fiducial points Q, S, J, P and T waves onset and offset points are worked out, supported in a simple modified slope method with constraints.The location process of fiducial points is assisted with the help of the so called curvature filters, which allow to improve the accuracy in this task.Results:The procedure is simulated in Matlab and GNU Octave by using test signals from the MIT medical database, Cardiosim II equipment patterns and synthetic signals developed by the authors.Conclusion:One of the novelties of this work is the global strategy. Also, another significant innovation is the introduction of the curvature filters. We think this concept will prove to be a useful tool in signal processing, not only in ECG analysis.


2015 ◽  
Vol 1 (1) ◽  
pp. 80-84 ◽  
Author(s):  
Lorenz Kahl ◽  
Marcus Eger ◽  
Ulrich G. Hofmann

AbstractThis study investigated the effects different sampling rates may produce on the quality of muscle fatigue detection algorithms. sEMG signals were obtained from isometric contractions of the arm. Subsampled signals resulting in technically relevant sampling rates were computationally deduced from the original recordings. The spectral based fatigue recognition methods mean and median frequency as well as spectral moment ratio were included in this investigation, as well as the sample and the fuzzy approximate entropy. The resulting fatigue indices were evaluated with respect to noise and separability of different load levels. We concluded that the spectral moment ratio provides the best results in fatigue detection over a wide range of sampling rates.


2019 ◽  
Vol 29 (06) ◽  
pp. 1850054 ◽  
Author(s):  
Yurong Li ◽  
Jun Chen ◽  
Yuan Yang

When surface electromyography (EMG) signal is used in a real-time functional electrical stimulation (FES) system for feedback control, the artifact from electrical stimulation is a key challenge for EMG signal processing. To address this challenge, this study proposes a novel method to suppress stimulation artifacts in the EMG-driven closed-loop FES system. The proposed method is inspired by an experimental study that compares artifacts generated by electrical stimulations with different current intensities. It is found that (1) spikes of stimulation artifacts are susceptible to the current intensity and (2) tailing components are similar under different current intensities. Based on these observations, the proposed method combines the blanking and template subtracting strategies for suppressing stimulation artifact. The length of blanking window for suppressing the stimulation spike is adaptively determined by a spike detection algorithm and the first-order derivative analysis of signal. An autoregressive model is used to estimate the tailing part of stimulation artifact, which is an adaptive template for subtracting the artifact. The proposed method is evaluated on both semi-synthetic and experimental datasets. Verified on the semi-synthetic dataset, the proposed method achieves better performance than the classic blanking method. Validated on the experimental dataset, the proposed method substantially decreases the power of stimulation artifact in the EMG. These results indicate that the proposed method can effectively suppress the stimulation artifact while retains the useful EMG signal for an EMG-driven FES system.


Author(s):  
Samuel Humphries ◽  
Trevor Parker ◽  
Bryan Jonas ◽  
Bryan Adams ◽  
Nicholas J Clark

Quick identification of building and roads is critical for execution of tactical US military operations in an urban environment. To this end, a gridded, referenced, satellite images of an objective, often referred to as a gridded reference graphic or GRG, has become a standard product developed during intelligence preparation of the environment. At present, operational units identify key infrastructure by hand through the work of individual intelligence officers. Recent advances in Convolutional Neural Networks, however, allows for this process to be streamlined through the use of object detection algorithms. In this paper, we describe an object detection algorithm designed to quickly identify and label both buildings and road intersections present in an image. Our work leverages both the U-Net architecture as well the SpaceNet data corpus to produce an algorithm that accurately identifies a large breadth of buildings and different types of roads. In addition to predicting buildings and roads, our model numerically labels each building by means of a contour finding algorithm. Most importantly, the dual U-Net model is capable of predicting buildings and roads on a diverse set of test images and using these predictions to produce clean GRGs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shaheen Syed ◽  
Bente Morseth ◽  
Laila A. Hopstock ◽  
Alexander Horsch

AbstractTo date, non-wear detection algorithms commonly employ a 30, 60, or even 90 mins interval or window in which acceleration values need to be below a threshold value. A major drawback of such intervals is that they need to be long enough to prevent false positives (type I errors), while short enough to prevent false negatives (type II errors), which limits detecting both short and longer episodes of non-wear time. In this paper, we propose a novel non-wear detection algorithm that eliminates the need for an interval. Rather than inspecting acceleration within intervals, we explore acceleration right before and right after an episode of non-wear time. We trained a deep convolutional neural network that was able to infer non-wear time by detecting when the accelerometer was removed and when it was placed back on again. We evaluate our algorithm against several baseline and existing non-wear algorithms, and our algorithm achieves a perfect precision, a recall of 0.9962, and an F1 score of 0.9981, outperforming all evaluated algorithms. Although our algorithm was developed using patterns learned from a hip-worn accelerometer, we propose algorithmic steps that can easily be applied to a wrist-worn accelerometer and a retrained classification model.


Sign in / Sign up

Export Citation Format

Share Document