scholarly journals Evaluation of Wear of Disc Brake Friction Linings and the Variability of the Friction Coefficient on the Basis of Vibroacoustic Signals

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5927
Author(s):  
Wojciech Sawczuk ◽  
Dariusz Ulbrich ◽  
Jakub Kowalczyk ◽  
Agnieszka Merkisz-Guranowska

The article presents the results of friction and vibroacoustic tests of a railway disc brake carried out on a brake stand. The vibration signal generated by the friction linings provides information on their wear and offers evaluation of the braking process, i.e., changes in the average friction coefficient. The algorithm presents simple regression linear and non-linear models for the thickness of the friction linings and the average coefficient of friction based on the effective value of vibration acceleration. The vibration acceleration signals were analyzed in the amplitude and frequency domains. In both cases, satisfactory values of the dynamics of changes above 6 dB were obtained. In the case of spectral analysis using a mid-band filter, more accurate models of the friction lining thickness and the average coefficient of friction were obtained. However, the spectral analysis does not allow the estimation of the lining thickness and the friction coefficient at low braking speeds, i.e., 50 and 80 km/h. The analysis of amplitudes leads to the determination of models in the entire braking speed range from 50 to 200 km/h, despite the lower accuracy compared to the model, based on the spectral analysis. The vibroacoustic literature presents methods of diagnosis of the wear of various machine elements such as bearings or friction linings, based on amplitude or frequency analysis of vibrations. These signal analysis methods have their limitations with regard to their scope of use and the accuracy of diagnosis. There are no cases of simultaneous use of different methods of analysis. This article presents the simultaneous application of the amplitude and frequency methods in the analysis of vibroacoustic signals generated by brake linings. Moreover, algorithms for assessing the wear of friction linings and the average coefficient of friction were presented. The algorithm enables determination of the time at which the friction linings should be replaced with new ones. The final algorithm analyzes the vibration acceleration signals using both amplitude analysis for low braking speeds, as well as spectral analysis for medium and high braking speeds.

Author(s):  
V. V. Domasevich ◽  
T. A. Ahmetov ◽  
M. P. Kulgeyko

The main factors of the process of diamond smoothing are considered in the work: the force of the contact interaction of the tool and the part in the deformation zone and the friction on the contact surface of the part and the smoother. The technique of analytical determination of the optimal smoothing force for the finishing-hardening treatment mode is presented. The calculated values were obtained for some characteristic grades of materials of small and medium hardness (≤ 210 HB, indenter radius 3.4 mm) and a number of hardened steels of high hardness (indenter radius 2.0 mm). The force values are also determined using expressions for the deformation component of the friction coefficient. A comparative analysis of the results indicates that the calculation options are adequate for practical purposes. On specific examples of processed materials, graphical dependencies are shown, which reflect the relationship between the coefficient of friction, including its deformation component, and the smoothing force. With an increase in the leveling force, the friction coefficient increases, this is explained by an increase in the depth of penetration of the diamond tip and, consequently, an increase in the deformation component. The depth of penetration of the indenter into the surface to be treated, and therefore the coefficient of friction during ironing, depends on the hardness of the material being processed. With increasing hardness, the penetration depth decreases, which leads to a decrease in the deformation component and in general the coefficient of friction. The friction coefficient is also affected by the radius of the working part of the tool, since the indenter penetration depth also depends on its value. The research results can be used in the development of technology for finishing and hardening diamond smoothing, the development of the process and its introduction into production.


2020 ◽  
Vol 111 ◽  
pp. 60-67
Author(s):  
Jacek Wilkowski ◽  
Marek Barlak ◽  
Radosław Jałocha ◽  
Zbigniew Werner ◽  
Alicja Auriga

Analysis of sliding friction of WC-Co composite on particleboard. The paper presents the analysis of the coefficient of friction at the contact area between WC-Co composite and particleboard. The four types of WC-Co composite in the form of milling indexable knives for wood materials machining were tested. The tests were carried out on a linear reciprocating tribotester (pin-on-flat), where the sample was the clearance surface of WC-Co indexable knives and the counter-sample was made of three-layer particleboard. Before and after tribological tests, the surface roughness of tested knives was measured. The highest values of friction coefficient were obtained for the type UMG04 of cemented carbide - with nano size of WC grains and the lowest content of cobalt. The average coefficient of friction for selected types of WC-Co correlated with the average increase in surface roughness (the roughness parameter Ry).


Tribologia ◽  
2019 ◽  
Vol 288 (6) ◽  
pp. 95-99
Author(s):  
Piotr Sokolski ◽  
Justyna Sokolska

Brake assemblies are key mechanisms in the aspect of safe and reliable operation of devices and machines. Due to intense thermal processes that occur during braking, the brakes are exposed to an accelerated wear. The article assesses the impact of tribological cooperation conditions between the caliper and the disc of a disc brake on the temperature of a disc. The variable value in the simulations was the coefficient of friction between the cooperating surfaces. A direct effect of the increase of the analysed parameter on the enhancement of brake elements’ temperature was found. At the same time, a similar nature of thermal processes was observed for all values of the friction coefficient taken into account.


2018 ◽  
Vol 875 ◽  
pp. 71-76
Author(s):  
Victor Kryaskov ◽  
Andrey Vashurin ◽  
Anton Tumasov ◽  
Alexey Vasiliev

This paper is dedicated to the issues of designing of outriggers for avoidance of vehicle tilting during its stability tests. An analysis of existing types of outriggers was done by authors as well as legislative requirements on them. The reliable and well-timed operation of outriggers largely depends on the height of their positioning on a vehicle. In order to determine this important parameter a special methodic of determining the tipping angle of the vehicle with the use of computer-aided design (CAD) was composed by authors. The article also contains some main principles of strength analysis of the structure a very important part of which became the necessity of determination of coefficient of friction between the outrigger sliders and the supporting surface. This coefficient has a direct impact on the value of transverse forces appearing at the ends of outrigger beams.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1153
Author(s):  
Ivan Pavlenko ◽  
Jozef Zajac ◽  
Nadiia Kharchenko ◽  
Ján Duplák ◽  
Vitalii Ivanov ◽  
...  

This article deals with improving the wear resistance of multilayer coatings as a fundamental problem in metal surface treatment, strengthening elements of cutting tools, and ensuring the reliability of machine parts. It aims to evaluate the wear depth for multilayer coatings by the mass loss distribution in layers. The article’s primary purpose is to develop a mathematical method for assessing the value of wear for multilayer steel-based coatings. The study material is a multilayer coating applied to steel DIN C80W1. The research was performed using up-to-date laboratory equipment. Nitrogenchroming has been realized under overpressure in two successive stages: nitriding for 36 h at temperature 540 °C and chromizing during 4 h at temperature 1050 °C. The complex analysis included several options: X-ray phase analysis, local micro-X-ray spectral analysis, durometric analysis, and determination of wear resistance. These analyses showed that after nitrogenchroming, the three-layer protective coating from Cr23C6, Cr7C3, and Cr2N was formed on the steel surface. Spectral analysis indicated that the maximum amount of chromium 92.2% is in the first layer from Cr23C6. The maximum amount of carbon 8.9% characterizes the layer from Cr7C3. Nitrogen is concentrated mainly in the Cr2N layer, and its maximum amount is 9.4%. Additionally, it was determined that the minimum wear is typical for steel DIN C80W1 after nitrogenchroming. The weight loss of steel samples by 25 mg was obtained. This value differs by 3.6% from the results evaluated analytically using the developed mathematical model of wear of multilayer coatings after complex metallization of steel DIN C80W1. As a result, the impact of the loading mode on the wear intensity of steel was established. As the loading time increases, the friction coefficient of the coated samples decreases. Among the studied samples, plates from steel DIN C80W1 have the lowest friction coefficient after nitrogenchroming. Additionally, a linear dependence of the mass losses on the wearing time was obtained for carbide and nitride coatings. Finally, an increase in loading time leads to an increase in the wear intensity of steels after nitrogenchroming. The achieved scientific results are applicable in developing methods of chemical-thermal treatment, improving the wear resistance of multilayer coatings, and strengthening highly loaded machine parts and cutting tools.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 611
Author(s):  
Yeon-Woong Choe ◽  
Sang-Bo Sim ◽  
Yeon-Moon Choo

In general, this new equation is significant for designing and operating a pipeline to predict flow discharge. In order to predict the flow discharge, accurate determination of the flow loss due to pipe friction is very important. However, existing pipe friction coefficient equations have difficulties in obtaining key variables or those only applicable to pipes with specific conditions. Thus, this study develops a new equation for predicting pipe friction coefficients using statistically based entropy concepts, which are currently being used in various fields. The parameters in the proposed equation can be easily obtained and are easy to estimate. Existing formulas for calculating pipe friction coefficient requires the friction head loss and Reynolds number. Unlike existing formulas, the proposed equation only requires pipe specifications, entropy value and average velocity. The developed equation can predict the friction coefficient by using the well-known entropy, the mean velocity and the pipe specifications. The comparison results with the Nikuradse’s experimental data show that the R2 and RMSE values were 0.998 and 0.000366 in smooth pipe, and 0.979 to 0.994 or 0.000399 to 0.000436 in rough pipe, and the discrepancy ratio analysis results show that the accuracy of both results in smooth and rough pipes is very close to zero. The proposed equation will enable the easier estimation of flow rates.


2020 ◽  
Vol 15 (4) ◽  
pp. 543-549
Author(s):  
Haydar Kepekci ◽  
Ergin Kosa ◽  
Cüneyt Ezgi ◽  
Ahmet Cihan

Abstract The brake system of an automobile is composed of disc brake and pad which are co-working components in braking and accelerating. In the braking period, due to friction between the surface of the disc and pad, the thermal heat is generated. It should be avoided to reach elevated temperatures in disc and pad. It is focused on different disc materials that are gray cast iron and carbon ceramics, whereas pad is made up of a composite material. In this study, the CFD model of the brake system is analyzed to get a realistic approach in the amount of transferred heat. The amount of produced heat can be affected by some parameters such as velocity and friction coefficient. The results show that surface temperature for carbon-ceramic disc material can change between 290 and 650 K according to the friction coefficient and velocity in transient mode. Also, if the disc material gray cast iron is selected, it can change between 295 and 500 K. It is claimed that the amount of dissipated heat depends on the different heat transfer coefficient of gray cast iron and carbon ceramics.


Sign in / Sign up

Export Citation Format

Share Document