scholarly journals On-Site Calibration Method for Line-Structured Light Sensor-Based Railway Wheel Size Measurement System

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6717
Author(s):  
Yunfeng Ran ◽  
Qixin He ◽  
Qibo Feng ◽  
Jianying Cui

Line-structured light has been widely used in the field of railway measurement, owing to its high capability of anti-interference, fast scanning speed and high accuracy. Traditional calibration methods of line-structured light sensors have the disadvantages of long calibration time and complicated calibration process, which is not suitable for railway field application. In this paper, a fast calibration method based on a self-developed calibration device was proposed. Compared with traditional methods, the calibration process is simplified and the calibration time is greatly shortened. This method does not need to extract light strips; thus, the influence of ambient light on the measurement is reduced. In addition, the calibration error resulting from the misalignment was corrected by epipolar constraint, and the calibration accuracy was improved. Calibration experiments in laboratory and field tests were conducted to verify the effectiveness of this method, and the results showed that the proposed method can achieve a better calibration accuracy compared to a traditional calibration method based on Zhang’s method.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wenjian Zhou ◽  
Sheng Yang ◽  
Li Wang ◽  
Hanmin Sheng ◽  
Yang Deng

For most high-precision power analyzers, the measurement accuracy may be affected due to the nonlinear relationship between the input and output signal. Therefore, calibration before measurement is important to ensure accuracy. However, the traditional calibration methods usually have complicated structures, cumbersome calibration process, and difficult selection of calibration points, which is not suitable for situations with many measurement points. To solve these issues, a nonlinear calibration method based on sinusoidal excitation and DFT transformation is proposed in this paper. By obtaining the effective value data of the current sinusoidal excitation from the calibration source, the accurate calibration process can be done, and the calibration efficiency can be improved effectively. Firstly, through Fourier transform, the phase value at the initial moment of the fundamental frequency is calculated. Then, the mapping relationship between the sampling value and the theoretical calculation value is established according to the obtained theoretical discrete expression, and a cubic spline interpolation method is used to further reduce the calibration error. Simulations and experiments show that the calibration method presented in this paper achieves high calibration accuracy, and the results are compensation value after calibration with a deviation of ± 3 × 10 − 4 .


Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Roberto Pagani ◽  
Cristina Nuzzi ◽  
Marco Ghidelli ◽  
Alberto Borboni ◽  
Matteo Lancini ◽  
...  

Since cobots are designed to be flexible, they are frequently repositioned to change the production line according to the needs; hence, their working area (user frame) needs to be often calibrated. Therefore, it is important to adopt a fast and intuitive user frame calibration method that allows even non-expert users to perform the procedure effectively, reducing the possible mistakes that may arise in such contexts. The aim of this work was to quantitatively assess the performance of different user frame calibration procedures in terms of accuracy, complexity, and calibration time, to allow a reliable choice of which calibration method to adopt and the number of calibration points to use, given the requirements of the specific application. This has been done by first analyzing the performances of a Rethink Robotics Sawyer robot built-in user frame calibration method (Robot Positioning System, RPS) based on the analysis of a fiducial marker distortion obtained from the image acquired by the wrist camera. This resulted in a quantitative analysis of the limitations of this approach that only computes local calibration planes, highlighting the reduction of performances observed. Hence, the analysis focused on the comparison between two traditional calibration methods involving rigid markers to determine the best number of calibration points to adopt to achieve good repeatability performances. The analysis shows that, among the three methods, the RPS one resulted in very poor repeatability performances (1.42 mm), while the three and five points calibration methods achieve lower values (0.33 mm and 0.12 mm, respectively) which are closer to the reference repeatability (0.08 mm). Moreover, comparing the overall calibration times achieved by the three methods, it is shown that, incrementing the number of calibration points to more than five, it is not suggested since it could lead to a plateau in the performances, while increasing the overall calibration time.


Author(s):  
Mingchi Feng ◽  
Xiang Jia ◽  
Jingshu Wang ◽  
Song Feng ◽  
Taixiong Zheng

Multi-cameras system is widely applied in 3D computer vision especially when multiple cameras are distributed on both sides of the measured object. The calibration methods of multi-cameras system are critical to the accuracy of vision measurement and the key is to find an appropriate calibration target. In this paper, a high-precision camera calibration method for multi-cameras system based on transparent glass checkerboard and ray tracing is described, which is used to calibrate multiple cameras distributed on both sides of the glass checkerboard. Firstly, the intrinsic parameters of each camera is obtained by Zhang’s calibration method. Then, multiple cameras capture several images from the front and back of the glass checkerboard with different orientations, and all images contain distinct grid corners. As the cameras on one side are not affected by the refraction of glass checkerboard, extrinsic parameters can be directly calculated. However, the cameras on another side are influenced by the refraction of glass checkerboard, and the direct use of projection model will produce calibration error. A multi-cameras calibration method using refractive projection model and ray tracing is developed to eliminate this error. Furthermore, both synthetic and real data are employed to validate the proposed approach. The experimental results of refractive calibration show that the error of the 3D reconstruction is smaller than 0.2 mm, the relative errors of both rotation and translation are less than 0.014%, and the mean and standard deviation of reprojection error of 4-cameras system are 0.00007 and 0.4543 pixel. The proposed method is flexible, high accurate, and simple to carry out.


1999 ◽  
Vol 122 (4) ◽  
pp. 734-738 ◽  
Author(s):  
Guangjun Zhang ◽  
Liqun Ma

The principle of structured light 3-D vision is introduced, and using projective and perspective transformations, the mathematical model of grid structured light based 3-D vision inspection is established in homogeneous coordinate system in this paper. Based on the image feature analysis of grid structured light, a calibration method of grid structured light based 3-D vision inspection is proposed, and experimental results are also presented. This method is easy, efficient and fast to carry out. It simplifies the calibration process while guaranteeing its accuracy. [S1087-1357(00)00703-6]


2011 ◽  
Vol 411 ◽  
pp. 602-608 ◽  
Author(s):  
Xiang Kui Jiang

In this paper,an improved genetic algorithm was proposed,which is applicable to binocular camera calibration. On the one hand, conventional encoding method is improved so that variable search interval can be adjusted adaptively. On the other hand, crossover and mutation probability is varied by using superiority inheritance principle to avoid premature question. Experimental results show that the proposed method has a higher calibration accuracy and better robustness, compared to those of non-linear calibration methods. The proposed method is able to improve the performance of global optimization effectively.


2022 ◽  
pp. 1-20
Author(s):  
Shiyu Bai ◽  
Jizhou Lai ◽  
Pin Lyu ◽  
Yiting Cen ◽  
Bingqing Wang ◽  
...  

Determination of calibration parameters is essential for the fusion performance of an inertial measurement unit (IMU) and odometer integrated navigation system. Traditional calibration methods are commonly based on the filter frame, which limits the improvement of the calibration accuracy. This paper proposes a graph-optimisation-based self-calibration method for the IMU/odometer using preintegration theory. Different from existing preintegrations, the complete IMU/odometer preintegration model is derived, which takes into consideration the effects of the scale factor of the odometer, and misalignments in the attitude and position between the IMU and odometer. Then the calibration is implemented by the graph-optimisation method. The KITTI dataset and field experimental tests are carried out to evaluate the effectiveness of the proposed method. The results illustrate that the proposed method outperforms the filter-based calibration method. Meanwhile, the performance of the proposed IMU/odometer preintegration model is optimal compared with the traditional preintegration models.


2012 ◽  
Vol 571 ◽  
pp. 433-438 ◽  
Author(s):  
Jules Douet ◽  
Jing Xu ◽  
Ken Chen

This paper proposes a sphere-based calibration method for the structured light system with unconstrained one projector & one camera, regardless of pattern codification. A 1-pose example of such a method is also proposed and tested. In comparison with a traditional plane translation method of 15 poses, we note an increase in the consistency of more than 10% while the calibration time shrinks to 6% and the calibration accessory is reduced to the size of a flash-light. This method suits well for applications where mobility, speed and ease-of-use are important criteria.


2013 ◽  
Vol 712-715 ◽  
pp. 2331-2335
Author(s):  
Jian Hua Wang ◽  
Yu Ping Wu ◽  
Zhao Yang

Camera calibration is the basis of vision-based 3D measurement. While many calibration methods have been proposed, the problem encountered in the practice of camera calibration is how to get accurate calibration parameters, which is seldom involved in references. This paper is focused on investigation of main factors influencing calibration accuracy, including manufacturing error of calibration rig, extracting error of control point and their combination. Based on the popular calibration method, simulation experiments are conducted at different error level, and the results show that the extracting error of control point has greater effect on calibration accuracy than manufacturing error of calibration rig. The manufacturing tolerance of calibration rig and extracting tolerance of control point is suggested to satisfy usual machine vision application.


2014 ◽  
Vol 981 ◽  
pp. 348-351
Author(s):  
Xiao Yang Yu ◽  
Xiao Liang Meng ◽  
Hai Bin Wu ◽  
Xiao Ming Sun ◽  
Li Wang

In coded-structured light three dimensional system, system calibration plays a vital role for the measurement accuracy. The camera calibration method is very mature, but the study about projector calibration is less. Therefore, this paper proposes a projector calibration method with simple calibration process and high accuracy. This method combines the Zhang’?s plane model calibration method with orthogonal phase shift coding. In calibration process, this paper uses phase shift coding pattern to establish the relationship of projector image and camera corner point coordinates. According to the image coordinates in the projector’?s perspective, we program and calculate the projector’?s internal and external parameters matrix based on the Zhang’?s plane model calibration toolbox. The results show that the proposed method is simple and flexible, the maximum relative error of the calibration parameters is 0.03%, and it meets the requirements of system calibration in medical or industrial fields.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4315 ◽  
Author(s):  
Lijie Yang ◽  
Ruirui Dang ◽  
Min Li ◽  
Kailong Zhao ◽  
Chunyi Song ◽  
...  

Phased array radars are able to provide highly accurate airplane surveillance and tracking performance if they are properly calibrated. However, the ambient temperature variation and device aging could greatly deteriorate their performance. Currently, performing a calibration over a large-scale phased array with thousands of antennas is time-consuming. To facilitate the process, we propose a fast calibration method for phased arrays with omnidirectional radiation patterns based on the graph coloring theory. This method transforms the calibration problem into a coloring problem that aims at minimizing the number of used colors. By reusing the calibration time slots spatially, more than one omnidirectional antenna can perform calibration simultaneously. The simulation proves this method can prominently reduce total calibration time and recover the radiation pattern from amplitude and phase errors and noise. It is worth noting that the total calibration time consumed by the proposed method remains constant and is negligible compared with other calibration methods.


Sign in / Sign up

Export Citation Format

Share Document