scholarly journals Performance Improvement of Residue-Free Graphene Field-Effect Transistor Using Au-Assisted Transfer Method

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7262
Author(s):  
Yamujin Jang ◽  
Young-Min Seo ◽  
Hyeon-Sik Jang ◽  
Keun Heo ◽  
Dongmok Whang

We report a novel graphene transfer technique for fabricating graphene field-effect transistors (FETs) that avoids detrimental organic contamination on a graphene surface. Instead of using an organic supporting film like poly(methyl methacrylate) (PMMA) for graphene transfer, Au film is directly deposited on the as-grown graphene substrate. Graphene FETs fabricated using the established organic film transfer method are easily contaminated by organic residues, while Au film protects graphene channels from these contaminants. In addition, this method can also simplify the device fabrication process, as the Au film acts as an electrode. We successfully fabricated graphene FETs with a clean surface and improved electrical properties using this Au-assisted transfer method.

2D Materials ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 021003 ◽  
Author(s):  
Hamin Park ◽  
Ick-Joon Park ◽  
Dae Yool Jung ◽  
Khang June Lee ◽  
Sang Yoon Yang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Rajabali ◽  
H. Asgharyan ◽  
V. Fadaei Naeini ◽  
A. Boudaghi ◽  
B. Zabihi ◽  
...  

AbstractLow concentration phosphorene-based sensors have been fabricated using a facile and ultra-fast process which is based on an exfoliation-free sequential hydrogen plasma treatment to convert the amorphous phosphorus thin film into mono- or few-layered phosphorene sheets. These sheets have been realized directly on silicon substrates followed by the fabrication of field-effect transistors showing the low leakage current and reasonable mobility for the nano-sensors. Being capable of covering the whole surface of the silicon substrate, red phosphorus (RP) coated substrate has been employed to achieve large area phosphorene sheets. Unlike the available techniques including mechanical exfoliation, there is no need for any exfoliation and/or transfer step which is significant progress in shortening the device fabrication procedure. These phosphorene sheets have been examined using transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Raman spectroscopy and atomic-force microscopy (AFM). Electrical output in different states of the crystallization as well as its correlation with the test parameters have been also extensively used to examine the evolution of the phosphorene sheets. By utilizing the fabricated devices, the sensitivity of the phosphorene based-field effect transistors to the soluble L-Cysteine in low concentrations has been studied by measuring the FET response to the different concentrations. At a gate voltage of − 2.5 V, the range of 0.07 to 0.60 mg/ml of the L-Cysteine has been distinguishably detected presenting a gate-controlled sensor for a low-concentration solution. A reactive molecular dynamics simulation has been also performed to track the details of this plasma-based crystallization. The obtained results showed that the imparted energy from hydrogen plasma resulted in a phase transition from a system containing red phosphorus atoms to the crystal one. Interestingly and according to the simulation results, there is a directional preference of crystal growth as the crystalline domains are being formed and RP atoms are more likely to re-locate in armchair than in zigzag direction.


2021 ◽  
Vol 13 (4) ◽  
pp. 5399-5405
Author(s):  
Alonit Kafri ◽  
Debopriya Dutta ◽  
Subhrajit Mukherjee ◽  
Pranab K. Mohapatra ◽  
Ariel Ismach ◽  
...  

2016 ◽  
Vol 8 (12) ◽  
pp. 8008-8016 ◽  
Author(s):  
Guohui Zhang ◽  
Aleix G. Güell ◽  
Paul M. Kirkman ◽  
Robert A. Lazenby ◽  
Thomas S. Miller ◽  
...  

2005 ◽  
Vol 17 (6) ◽  
pp. 684-689 ◽  
Author(s):  
W. Pisula ◽  
A. Menon ◽  
M. Stepputat ◽  
I. Lieberwirth ◽  
U. Kolb ◽  
...  

2011 ◽  
Vol 1283 ◽  
Author(s):  
Benjamin Mailly Giacchetti ◽  
Allen Hsu ◽  
Han Wang ◽  
Ki Kang Kim ◽  
Jing Kong ◽  
...  

ABSTRACTThis paper presents the fabrication technology and initial characterization of electrolyte-gated field effect transistor (FET) arrays based on CVD grown graphene on copper. We show that the graphene FET (GFET), when immersed in electrolytes, exhibit a transconductance around 5 mS/mm. From preliminary pH sensing experiments, a pH sensitivity of 24 mV/pH has been demonstrated.


Carbon ◽  
2013 ◽  
Vol 62 ◽  
pp. 312-321 ◽  
Author(s):  
Jin Heak Jung ◽  
Il Yung Sohn ◽  
Duck Jin Kim ◽  
Bo Yeong Kim ◽  
Mi Jang ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 153-163
Author(s):  
S. Behera ◽  
S. R. Pattanaik ◽  
G. Dash

The success of the graphene field-effect transistor (GFET) is primarily based on solving the problems associated with the growth and transfer of high-quality graphene, the deposition of dielectrics and contact resistance. The contact resistance between graphene and metal electrodes is crucial for the achievement of high-performance graphene devices. This is because process variability is inherent in semiconductor device manufacturing. Two units, even manufactured in the same batch, never show identical characteristics. Therefore, it is imperative that the effect of variability be studied with a view to obtain equivalent performance from similar devices. In this study, we undertake the variability of source and drain contact resistances and their effects on the performance of GFET. For this we have used a simulation method developed by us. The results show that the DC characteristics of GFET are highly dependent on the channel resistance. Also the ambipolar characteristics are strongly affected by the variation of source and drain resistances. We have captured their impact on the output as well as transfer characteristics of a dual gate GFET.


Sign in / Sign up

Export Citation Format

Share Document