scholarly journals Stack LSTM-Based User Identification Using Smart Shoes with Accelerometer Data

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8129
Author(s):  
Do-Yun Kim ◽  
Seung-Hyeon Lee ◽  
Gu-Min Jeong

In this study, we propose a long short-term memory (LSTM)-based user identification method using accelerometer data from smart shoes. In general, for the user identification with human walking data, we require a pre-processing stage in order to divide human walking data into individual steps. Next, user identification can be made with divided step data. In these approaches, when there exist partial data that cannot complete a single step, it is difficult to apply those data to the classification. Considering these facts, in this study, we present a stack LSTM-based user identification method for smart-shoes data. Rather than using a complicated analysis method, we designed an LSTM network for user identification with accelerometer data of smart shoes. In order to learn partial data, the LSTM network was trained using walking data with random sizes and random locations. Then, the identification can be made without any additional analysis such as step division. In the experiments, user walking data with 10 m were used. The experimental results show that the average recognition rate was about 93.41%, 97.19%, and 98.26% by using walking data of 2.6, 3.9, and 5.2 s, respectively. With the experimental results, we show that the proposed method can classify users effectively.

2020 ◽  
Vol 39 (4) ◽  
pp. 4835-4846
Author(s):  
Han He ◽  
Si Yi ◽  
Weiwei Liu

It is of great research value and practical significance to use new technology to improve the accuracy of English speech recognition and apply the system to mobile platforms for users to use. The main content of this paper is the long-term and short-term memory, and the current decoding part is applied to the Android platform, and the performance of the program is analyzed. Neural networks converge slowly, making learning long-term memory difficult. In the experiment, the BPTT algorithm is used to analyze the problem of error elimination in traditional recursive networks. Combining BPTT algorithm in LSTM network to solve the problem of traditional error elimination and improve speech recognition rate. In addition, this paper uses a new LSTM recurrent neural network to study the implementation of LSTM network on Android platform. Finally, this paper designs a comparative experiment to analyze the efficiency of oral English recognition. The results show that the research algorithm of this paper has certain effects.


2021 ◽  
Vol 2093 (1) ◽  
pp. 012006
Author(s):  
Zhijun Gao ◽  
Qiaoyu Gu ◽  
Zhonghua Han

Abstract Aiming at the problem that the exiting human skeleton-based action recognition methods cannot fully extract the relevant information before and after the action, resulting in low utilization efficiency of skeleton points, we propose a two-layer LSTM (long short term memory) network with attention mechanism. The network has two layers, the first LSTM network is used for skeleton coding and initialization of system storage units and the second LSTM network integrates attention mechanism to further process the data of the first layer network. An algorithm is designed to assign different weights to skeleton points according to the importance of human body, which greatly increases the recognition accuracy. Action classification is accomplished by multiple support vector machines. Through training and testing, the average recognition rate of 98.5% is achieved on KTH dataset. The experimental result shows that the proposed method is effective in human behavior recognition.


2013 ◽  
Vol 846-847 ◽  
pp. 1230-1233
Author(s):  
Hui Wang ◽  
Gang Liu ◽  
Hong Chang Ke

Based on direction index histogram (DIH) handwriting identification method, a new improved DIH handwriting identification algorithm is proposed. Firstly handwriting image which is prepared to test is pre-treat, then binary and removing noise the normalized image can be obtain. The obtained features of distance are divided into two factors: writing influence factor and character influence factor, then compared the pre-test images with samples of handwriting images according to the features of the images. Experimental results show that the handwriting identification algorithm proposed by this paper has better recognition rate than DIH algorithm, and obtain better result.


2021 ◽  
Vol 13 (12) ◽  
pp. 6953
Author(s):  
Yixing Du ◽  
Zhijian Hu

Data-driven methods using synchrophasor measurements have a broad application prospect in Transient Stability Assessment (TSA). Most previous studies only focused on predicting whether the power system is stable or not after disturbance, which lacked a quantitative analysis of the risk of transient stability. Therefore, this paper proposes a two-stage power system TSA method based on snapshot ensemble long short-term memory (LSTM) network. This method can efficiently build an ensemble model through a single training process, and employ the disturbed trajectory measurements as the inputs, which can realize rapid end-to-end TSA. In the first stage, dynamic hierarchical assessment is carried out through the classifier, so as to screen out credible samples step by step. In the second stage, the regressor is used to predict the transient stability margin of the credible stable samples and the undetermined samples, and combined with the built risk function to realize the risk quantification of transient angle stability. Furthermore, by modifying the loss function of the model, it effectively overcomes sample imbalance and overlapping. The simulation results show that the proposed method can not only accurately predict binary information representing transient stability status of samples, but also reasonably reflect the transient safety risk level of power systems, providing reliable reference for the subsequent control.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 359
Author(s):  
Kai Ye ◽  
Yangheran Piao ◽  
Kun Zhao ◽  
Xiaohui Cui

Forecasting the prices of hogs has always been a popular field of research. Such information has played an essential role in decision-making for farmers, consumers, corporations, and governments. It is hard to predict hog prices because too many factors can influence them. Some of the factors are easy to quantify, but some are not. Capturing the characteristics behind the price data is also tricky considering their non-linear and non-stationary nature. To address these difficulties, we propose Heterogeneous Graph-enhanced LSTM (HGLTSM), which is a method that predicts weekly hog price. In this paper, we first extract the historical prices of necessary agricultural products in recent years. Then, we utilize discussions from the online professional community to build heterogeneous graphs. These graphs have rich information of both discussions and the engaged users. Finally, we construct HGLSTM to make the prediction. The experimental results demonstrate that forum discussions are beneficial to hog price prediction. Moreover, our method exhibits a better performance than existing methods.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1181
Author(s):  
Chenhao Zhu ◽  
Sheng Cai ◽  
Yifan Yang ◽  
Wei Xu ◽  
Honghai Shen ◽  
...  

In applications such as carrier attitude control and mobile device navigation, a micro-electro-mechanical-system (MEMS) gyroscope will inevitably be affected by random vibration, which significantly affects the performance of the MEMS gyroscope. In order to solve the degradation of MEMS gyroscope performance in random vibration environments, in this paper, a combined method of a long short-term memory (LSTM) network and Kalman filter (KF) is proposed for error compensation, where Kalman filter parameters are iteratively optimized using the Kalman smoother and expectation-maximization (EM) algorithm. In order to verify the effectiveness of the proposed method, we performed a linear random vibration test to acquire MEMS gyroscope data. Subsequently, an analysis of the effects of input data step size and network topology on gyroscope error compensation performance is presented. Furthermore, the autoregressive moving average-Kalman filter (ARMA-KF) model, which is commonly used in gyroscope error compensation, was also combined with the LSTM network as a comparison method. The results show that, for the x-axis data, the proposed combined method reduces the standard deviation (STD) by 51.58% and 31.92% compared to the bidirectional LSTM (BiLSTM) network, and EM-KF method, respectively. For the z-axis data, the proposed combined method reduces the standard deviation by 29.19% and 12.75% compared to the BiLSTM network and EM-KF method, respectively. Furthermore, for x-axis data and z-axis data, the proposed combined method reduces the standard deviation by 46.54% and 22.30% compared to the BiLSTM-ARMA-KF method, respectively, and the output is smoother, proving the effectiveness of the proposed method.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Kate Highnam ◽  
Domenic Puzio ◽  
Song Luo ◽  
Nicholas R. Jennings

AbstractBotnets and malware continue to avoid detection by static rule engines when using domain generation algorithms (DGAs) for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect DGA variants that combine random dictionary words to create domain names that closely mirror legitimate domains. To combat this, we created a novel hybrid neural network, Bilbo the “bagging” model, that analyses domains and scores the likelihood they are generated by such algorithms and therefore are potentially malicious. Bilbo is the first parallel usage of a convolutional neural network (CNN) and a long short-term memory (LSTM) network for DGA detection. Our unique architecture is found to be the most consistent in performance in terms of AUC, $$F_1$$ F 1 score, and accuracy when generalising across different dictionary DGA classification tasks compared to current state-of-the-art deep learning architectures. We validate using reverse-engineered dictionary DGA domains and detail our real-time implementation strategy for scoring real-world network logs within a large enterprise. In 4 h of actual network traffic, the model discovered at least five potential command-and-control networks that commercial vendor tools did not flag.


Author(s):  
Zhang Chao ◽  
Wang Wei-zhi ◽  
Zhang Chen ◽  
Fan Bin ◽  
Wang Jian-guo ◽  
...  

Accurate and reliable fault diagnosis is one of the key and difficult issues in mechanical condition monitoring. In recent years, Convolutional Neural Network (CNN) has been widely used in mechanical condition monitoring, which is also a great breakthrough in the field of bearing fault diagnosis. However, CNN can only extract local features of signals. The model accuracy and generalization of the original vibration signals are very low in the process of vibration signal processing only by CNN. Based on the above problems, this paper improves the traditional convolution layer of CNN, and builds the learning module (local feature learning block, LFLB) of the local characteristics. At the same time, the Long Short-Term Memory (LSTM) is introduced into the network, which is used to extract the global features. This paper proposes the new neural network—improved CNN-LSTM network. The extracted deep feature is used for fault classification. The improved CNN-LSTM network is applied to the processing of the vibration signal of the faulty bearing collected by the bearing failure laboratory of Inner Mongolia University of science and technology. The results show that the accuracy of the improved CNN-LSTM network on the same batch test set is 98.75%, which is about 24% higher than that of the traditional CNN. The proposed network is applied to the bearing data collection of Western Reserve University under the condition that the network parameters remain unchanged. The experiment shows that the improved CNN-LSTM network has better generalization than the traditional CNN.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 165419-165431
Author(s):  
Benvolence Chinomona ◽  
Chunhui Chung ◽  
Lien-Kai Chang ◽  
Wei-Chih Su ◽  
Mi-Ching Tsai

2013 ◽  
Vol 694-697 ◽  
pp. 2336-2340
Author(s):  
Yun Feng Yang ◽  
Feng Xian Tang

In order to construct a certain standard structure MRI (Magnetic resonance imaging) image library by extracting and collating unstructured literature data information, an identification method of the image and text information fusion is proposed. The method makes use of PHOW (Pyramid Histogram Of Words) to represent image features, combines with the word frequency characteristics of the embedded icon note (text), and then uses posterior multiplication fusion method to complete the classification and identification of the online biological literature MRI image. The experimental results show that this method has better correct recognition rate and better recognition performance than feature identification method only based on PHOW or text. The study can offer use for reference to construct other structured professional database from online literature.


Sign in / Sign up

Export Citation Format

Share Document