scholarly journals Deep Reinforcement Learning for UAV Trajectory Design Considering Mobile Ground Users

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8239
Author(s):  
Wonseok Lee ◽  
Young Jeon ◽  
Taejoon Kim ◽  
Young-Il Kim

A network composed of unmanned aerial vehicles (UAVs), serving as base stations (UAV-BS network), is emerging as a promising component in next-generation communication systems. In the UAV-BS network, the optimal positioning of a UAV-BS is an essential requirement to establish line-of-sight (LoS) links for ground users. A novel deep Q-network (DQN)-based learning model enabling the optimal deployment of a UAV-BS is proposed. Moreover, without re-learning of the model and the acquisition of the path information of ground users, the proposed model presents the optimal UAV-BS trajectory while ground users move. Specifically, the proposed model optimizes the trajectory of a UAV-BS by maximizing the mean opinion score (MOS) for ground users who move to various paths. Furthermore, the proposed model is highly practical because, instead of the locations of individual mobile users, an average channel power gain is used as an input parameter. The accuracy of the proposed model is validated by comparing the results of the model with those of a mathematical optimization solver.

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1838 ◽  
Author(s):  
Mahdi Abkar ◽  
Jens Sørensen ◽  
Fernando Porté-Agel

In this study, an analytical wake model for predicting the mean velocity field downstream of a wind turbine under veering incoming wind is systematically derived and validated. The new model, which is an extended version of the one introduced by Bastankhah and Porté-Agel, is based upon the application of mass conservation and momentum theorem and considering a skewed Gaussian distribution for the wake velocity deficit. Particularly, using a skewed (instead of axisymmetric) Gaussian shape allows accounting for the lateral shear in the incoming wind induced by the Coriolis force. This analytical wake model requires only the wake expansion rate as an input parameter to predict the mean wake flow downstream. The performance of the proposed model is assessed using the large-eddy simulation (LES) data of a full-scale wind turbine wake under the stably stratified condition. The results show that the proposed model is capable of predicting the skewed structure of the wake downwind of the turbine, and its prediction for the wake velocity deficit is in good agreement with the high-fidelity simulation data.


1985 ◽  
Vol 50 (11) ◽  
pp. 2396-2410
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

The study describes a method of modelling axial-radial circulation in a tank with an axial impeller and radial baffles. The proposed model is based on the analytical solution of the equation for vortex transport in the mean flow of turbulent liquid. The obtained vortex flow model is tested by the results of experiments carried out in a tank of diameter 1 m and with the bottom in the shape of truncated cone as well as by the data published for the vessel of diameter 0.29 m with flat bottom. Though the model equations are expressed in a simple form, good qualitative and even quantitative agreement of the model with reality is stated. Apart from its simplicity, the model has other advantages: minimum number of experimental data necessary for the completion of boundary conditions and integral nature of these data.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 162 ◽  
Author(s):  
Thorben Helmers ◽  
Philip Kemper ◽  
Jorg Thöming ◽  
Ulrich Mießner

Microscopic multiphase flows have gained broad interest due to their capability to transfer processes into new operational windows and achieving significant process intensification. However, the hydrodynamic behavior of Taylor droplets is not yet entirely understood. In this work, we introduce a model to determine the excess velocity of Taylor droplets in square microchannels. This velocity difference between the droplet and the total superficial velocity of the flow has a direct influence on the droplet residence time and is linked to the pressure drop. Since the droplet does not occupy the entire channel cross-section, it enables the continuous phase to bypass the droplet through the corners. A consideration of the continuity equation generally relates the excess velocity to the mean flow velocity. We base the quantification of the bypass flow on a correlation for the droplet cap deformation from its static shape. The cap deformation reveals the forces of the flowing liquids exerted onto the interface and allows estimating the local driving pressure gradient for the bypass flow. The characterizing parameters are identified as the bypass length, the wall film thickness, the viscosity ratio between both phases and the C a number. The proposed model is adapted with a stochastic, metaheuristic optimization approach based on genetic algorithms. In addition, our model was successfully verified with high-speed camera measurements and published empirical data.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


2021 ◽  
Vol 11 (8) ◽  
pp. 3636
Author(s):  
Faria Zarin Subah ◽  
Kaushik Deb ◽  
Pranab Kumar Dhar ◽  
Takeshi Koshiba

Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect ASD with a very limited dataset which provides high accuracy but results in poor generalization. To overcome this limitation and to enhance the performance of the automated autism diagnosis model, in this paper, we propose an ASD detection model using functional connectivity features of resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock 200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to perform the classification task. Simulation results indicate that the proposed model outperforms state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%, whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity, F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 772 ◽  
Author(s):  
Houshyar Honar Pajooh ◽  
Mohammad Rashid ◽  
Fakhrul Alam ◽  
Serge Demidenko

The proliferation of smart devices in the Internet of Things (IoT) networks creates significant security challenges for the communications between such devices. Blockchain is a decentralized and distributed technology that can potentially tackle the security problems within the 5G-enabled IoT networks. This paper proposes a Multi layer Blockchain Security model to protect IoT networks while simplifying the implementation. The concept of clustering is utilized in order to facilitate the multi-layer architecture. The K-unknown clusters are defined within the IoT network by applying techniques that utillize a hybrid Evolutionary Computation Algorithm while using Simulated Annealing and Genetic Algorithms. The chosen cluster heads are responsible for local authentication and authorization. Local private blockchain implementation facilitates communications between the cluster heads and relevant base stations. Such a blockchain enhances credibility assurance and security while also providing a network authentication mechanism. The open-source Hyperledger Fabric Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The simulation results demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported approaches. The proposed lightweight blockchain model is also shown to be better suited to balance network latency and throughput as compared to a traditional global blockchain.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 191
Author(s):  
José A. P. Morgado ◽  
Adolfo V. T. Cartaxo

The correlation and power distribution of intercore crosstalk (ICXT) field components of weakly coupled multicore fibers (WC-MCFs) are important properties that determine the statistics of the ICXT and ultimately impact the performance of WC-MCF optical communication systems. Using intensive numerical simulation of the coupled mode equations describing ICXT of a single-mode WC-MCF with intracore birefringence and linear propagation, we assess the mean, correlation, and power distribution of the four ICXT field components of unmodulated polarization-coupled homogeneous and quasi-homogeneous WC-MCFs with a single interfering core in a wide range of birefringence conditions and power distribution among the field components at the interfering core input. It is shown that, for homogeneous and quasi-homogeneous WC-MCFs, zero mean uncorrelated ICXT field components with similar power levels are observed for birefringence correlation length and birefringence beat length in the ranges of 0.5m,10m and 0.1m,10m, respectively, regardless of the distribution of power between the four field components at the interfering core input.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xiangwen Liao ◽  
Lingying Zhang ◽  
Jingjing Wei ◽  
Dingda Yang ◽  
Guolong Chen

User influence is a very important factor for microblog user recommendation in mobile social network. However, most existing user influence analysis works ignore user’s temporal features and fail to filter the marketing users with low influence, which limits the performance of recommendation methods. In this paper, a Tensor Factorization based User Cluster (TFUC) model is proposed. We firstly identify latent influential users by neural network clustering. Then, we construct a features tensor according to latent influential user’s opinion, activity, and network centrality information. Furthermore, user influences are predicted by the latent factors resulting from the temporal restrained CP decomposition. Finally, we recommend microblog users considering both user influence and content similarity. Our experimental results show that the proposed model significantly improves recommendation performance. Meanwhile, the mean average precision of TFUC outperforms the baselines with 3.4% at least.


Sign in / Sign up

Export Citation Format

Share Document