scholarly journals Application of Pyroelectric Sensors Based on PVDF Films for EPR Spectra Detection by Heat Release

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8426
Author(s):  
Anatoly R. Melnikov ◽  
Samat B. Zikirin ◽  
Evgeny V. Kalneus ◽  
Vladimir I. Ivannikov ◽  
Yuri A. Grishin ◽  
...  

Pyroelectrics are a wide class of materials that change their polarization when the system temperature varies. This effect is utilized for a number of different commercial and industrial applications ranging from simple thermal sensors and laser interferometers to water vapor harvesting. Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for studying the structure and dynamics of materials with unpaired electrons. Since heating accompanies a resonant change of the orientation of electron spins in an external magnetic field, pyroelectrics can be utilized as versatile detectors for so-called indirect detection of the EPR signal. In this work, we investigated three different types of PVDF (polyvinylidene difluoride) standard pyroelectric films with indium tin oxide, Cu/Ni, and Au coatings to determine their sensitivity for detecting EPR signals. All the films were shown to be able to detect the EPR spectra of about 1 μg of a standard stable free radical by heat release. A comparative study based on the calculation of the noise-equivalent power and specific detectivity from experimental spectra showed that the Au coated PVDF film is the most promising active element for measuring the EPR signal. Using the best achieved sensitivity, estimation is given whether this is sufficient for using a PVDF-based pyrodetector for indirectly detecting EPR spectra by recombination heat release or not.

2000 ◽  
Vol 609 ◽  
Author(s):  
Takashi Ehara ◽  
Tadaaki Ikoma ◽  
Shozo Tero-Kubota

ABSTRACTDangling bond defects (DB) in silicon microcrystallines and clusters embedded in SiO2 have been studied by X- and Q-band electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra due to the DB were remarkably depending on the grain size, which was controlled by annealing temperature. The microcrystalline containing film shows a broad and unsymmetrical EPR signal at g = 2.006 with the line width of 13 G in X-band spectra. The signal can be simulated by using the anisotropic g-values of Pb center. The Si cluster samples obtained from the annealing at less than 800°C give an asymmetric EPR spectra at about g = 2.004 with the line width of about 9 G in X-band. The EPR signal due to the E' center was also observed.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3449
Author(s):  
Ireneusz Stefaniuk ◽  
Werner Obermayr ◽  
Volodymyr D. Popovych ◽  
Bogumił Cieniek ◽  
Iwona Rogalska

In this paper, we show a simple method of producing ferromagnetic materials with a Curie temperature above room temperature. The electron paramagnetic resonance (EPR) spectra of Cd1−xCrxTe (0.002 < x < 0.08) were measured with a dependence on temperature (82 K < T < 381 K). Obtained EPR lines were fitted to a Lorentz-shaped curve. The temperature dependencies of the parameters of the EPR lines, such as the peak-to-peak linewidth (Hpp), the intensity (A), as well as the resonance field (Hr), were studied. Ferromagnetism was noticed in samples at high temperatures (near room temperature). For a sample with a nominal concentration of chrome of x = 0.05, a very strong intrinsic magnetic field is observed. The value of the effective gyromagnetic factor for this sample is ge = 30 at T = 240 K. An increase of chrome concentration above x = 0.05 reduces the ferromagnetic properties considerably. Analysis of the temperature dependencies of the integral intensity of EPR spectra was carried out using the Curie–Weiss law and the paramagnetic Curie temperature was obtained.


1996 ◽  
Vol 442 ◽  
Author(s):  
J.-M. Spaeth ◽  
S. Greulich-Weber ◽  
M. März ◽  
E. N. Kalabukhova ◽  
S. N. Lukin

AbstractThe electronic structure of nitrogen donors in 6H-, 4H- and 3C-SiC is investigated by measuring the nitrogen hyperfine (hf) interactions with electron nuclear double resonance (ENDOR) and the temperature dependence of the hf split electron paramagnetic resonance (EPR) spectra. Superhyperfine (shf) interactions with many shells of 13C and 29Si were measured in 6H-SiC. The hf and shf interactions are discussed in the framework of effective mass theory. The temperature dependence is explained with the thermal occupation of the lowest valley-orbit split A1 and E states. It is proposed that the EPR spectra of P donors observed previously in neutron transmuted 6H-SiC at low temperature (<10K) and high temperature (>60K) are all due to substitutional P donors on the two quasi-cubic and hexagonal Si sites, whereby at low temperature the E state is occupied and at high temperature the A1 state. The low temperature spectra are thus thought not to be due to P-vacancy pair defects as proposed previously.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3410
Author(s):  
Bozena Debska ◽  
Ewa Spychaj-Fabisiak ◽  
Wiesław Szulc ◽  
Renata Gaj ◽  
Magdalena Banach-Szott

The major indicator of soil fertility and productivity are humic acids (HAs) arising from decomposition of organic matter. The structure and properties of HAs depend, among others climate factors, on soil and anthropogenic factors, i.e., methods of soil management. The purpose of the research undertaken in this paper is to study humic acids resulting from the decomposition of crop residues of wheat (Triticum aestivum L.) and plant material of thuja (Thuja plicata D.Don.ex. Lamb) using electron paramagnetic resonance (EPR) spectroscopy. In the present paper, we report EPR studies carried out on two types of HAs extracted from forest soil and incubated samples of plant material (mixture of wheat straw and roots), both without soil and mixed with soil. EPR signals obtained from these samples were subjected to numerical analysis, which showed that the EPR spectra of each sample could be deconvoluted into Lorentzian and Gaussian components. It can be shown that the origin of HAs has a significant impact on the parameters of their EPR spectra. The parameters of EPR spectra of humic acids depend strongly on their origin. The HA samples isolated from forest soils are characterized by higher spin concentration and lower peak-to-peak width of EPR spectra in comparison to those of HAs incubated from plant material.


1969 ◽  
Author(s):  
D.A. Bozanic ◽  
D.C. Buck ◽  
F.H. Harris ◽  
R.E. Huber ◽  
D. Mergerian ◽  
...  

1995 ◽  
Vol 405 ◽  
Author(s):  
Patricia J. Macfarlane ◽  
M. E. Zvanut ◽  
W. E. Carlos ◽  
M. E. Twigg ◽  
P. E. Thompson

AbstractThis paper reports etching results supporting the identification of the SG1 center as a germanium dangling bond defect at the interface between an oxide and crystalline SiGe. The presence of this defect is significant because, like an analogous center in Si-based systems, it may alter the operation of any microelectronic or micro-optical device which incorporates an interface between SiGe and an overlying oxide. The samples examined are oxygen implanted SiGe layers in which the SG1 center is believed to occur at the interface between oxide precipitates and SiGe. Because of the center's apparent relation to the oxide precipitates distributed through layers of the sample, a depth profile assists in confirming the interfacial nature of the defect. We obtain a depth profile by comparing electron paramagnetic resonance (EPR) spectra of samples etched to decreasing thickness. EPR spectra indicate that the SG1 center decreases with depth in a manner that when correlated to a cross sectional transmission electron micrograph confirms the association with SiO2 and supports its location at the SiGe/SiO2 precipitate interface.


1960 ◽  
Vol 33 (2) ◽  
pp. 462-468 ◽  
Author(s):  
S. E. Bresler ◽  
S. N. Zhurkov ◽  
E. N. Kazbekov ◽  
E. M. Saminskiĭ ◽  
E. E. Tomashevskiĭ

Abstract It is well known that during the mechanical degradation of polymers there takes place scission of molecular chains and the formation of macroradicals. It is of considerable interest to study the electron paramagnetic resonance (EPR) spectra of the macroradicals produced by milling, and to compare them with the spectra of the macroradicals formed in the process of polymerization, and also during the irradiation of polymers by gamma rays and neutrons. We may endeavor to compare the amount of macroradicals formed with the extent of mechanical destruction (for instance with the area of the new interface which is formed). In addition, as was found by experience, the macroradicals formed by mechanical scission are good models for the investigation of reactivity since practically all of them are in the newly formed surface layers and are therefore very accessible to various chemical influences. They enter easily into reaction with various agents present in the medium since in this process diffusion from the surface is found in practice not to be a predominating factor. In the present communication we give the first EPR results obtained on mechanically degraded polymers.


2003 ◽  
Vol 285 (2) ◽  
pp. H589-H596 ◽  
Author(s):  
Kazuyoshi Kirima ◽  
Koichiro Tsuchiya ◽  
Hiroyoshi Sei ◽  
Toyoshi Hasegawa ◽  
Michiyo Shikishima ◽  
...  

The measurement of hemoglobin-nitric oxide (NO) adduct (HbNO) in whole blood by the electron paramagnetic resonance (EPR) method seems relevant for the assessment of systemic NO levels. However, ceruloplasmin and unknown radical species overlap the same magnetic field as that of HbNO. To reveal the EPR spectrum of HbNO, we then introduced the EPR signal subtraction method, which is based on the computer-assisted subtraction of the digitized EPR spectrum of HbNO-depleted blood from that of sample blood using the software. Rats were treated with Nω-nitro-l-arginine methyl ester (l-NAME; 120 mg · kg–1 · day–1) for 1 wk to obtain HbNO-depleted blood. When this method was applied to the analysis of untreated fresh whole blood, the five-coordinate state of HbNO was observed. HbNO concentration in pentobarbital-anesthetized rats was augmented (change in [HbNO] = 1.6–5.5 μM) by infusion of l-arginine (0.2–0.6 g/kg) but not d-arginine. Using this method, we attempted to evaluate the effects of temocapril on HbNO dynamics in an l-NAME-induced rat endothelial dysfunction model. The oral administration of l-NAME for 2 wk induced a serious hypertension, and the HbNO concentration was reduced (change in [HbNO] = 5.7 μM). Coadministration of temocapril dose dependently improved both changes in blood pressure and the systemic HbNO concentration. In this study, we succeeded in measuring the blood HbNO level as an index of NO by the EPR HbNO signal subtraction method. We also demonstrated that temocapril improves abnormalities of NO dynamics in l-NAME-induced endothelial dysfunction rats using the EPR HbNO signal subtraction method.


Sign in / Sign up

Export Citation Format

Share Document