scholarly journals Automating IoT Data Ingestion Enabling Visual Representation

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8429
Author(s):  
Ala Arman ◽  
Pierfrancesco Bellini ◽  
Daniele Bologna ◽  
Paolo Nesi ◽  
Gianni Pantaleo ◽  
...  

The Internet of things has produced several heterogeneous devices and data models for sensors/actuators, physical and virtual. Corresponding data must be aggregated and their models have to be put in relationships with the general knowledge to make them immediately usable by visual analytics tools, APIs, and other devices. In this paper, models and tools for data ingestion and regularization are presented to simplify and enable the automated visual representation of corresponding data. The addressed problems are related to the (i) regularization of the high heterogeneity of data that are available in the IoT devices (physical or virtual) and KPIs (key performance indicators), thus allowing such data in elements of hypercubes to be reported, and (ii) the possibility of providing final users with an index on views and data structures that can be directly exploited by graphical widgets of visual analytics tools, according to different operators. The solution analyzes the loaded data to extract and generate the IoT device model, as well as to create the instances of the device and generate eventual time series. The whole process allows data for visual analytics and dashboarding to be prepared in a few clicks. The proposed IoT device model is compliant with FIWARE NGSI and is supported by a formal definition of data characterization in terms of value type, value unit, and data type. The resulting data model has been enforced into the Snap4City dashboard wizard and tool, which is a GDPR-compliant multitenant architecture. The solution has been developed and validated by considering six different pilots in Europe for collecting big data to monitor and reason people flows and tourism with the aim of improving quality of service; it has been developed in the context of the HERIT-DATA Interreg project and on top of Snap4City infrastructure and tools. The model turned out to be capable of meeting all the requirements of HERIT-DATA, while some of the visual representation tools still need to be updated and furtherly developed to add a few features.

2020 ◽  
Vol 3 (2) ◽  
pp. 153-164
Author(s):  
Yulia Suryandari

The Internet of Things (IoT) has enormous potential in creating the value of life related to technology. IoT has various application domains, including in the health sector. IoT-based healthcare services are expected to reduce costs, improve quality of life, and enrich user experience. The presence of IoT devices for healthcare services can also avoid unnecessary hospitalization and ensure that patients who need health services get it quickly. This paper surveys advances in IoT-based health care technology and reviews the latest architectures / platforms, platforms, applications and industry trends in IoT-based healthcare solutions. Some IoT devices and prototypes in the healthcare field are also discussed in this paper. Through this paper, it is expected that readers can be known and discuss IoT devices in the healthcare sector.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3704 ◽  
Author(s):  
Mario Marchese ◽  
Aya Moheddine ◽  
Fabio Patrone

The Fifth Generation of Mobile Communications (5G) will lead to the growth of use cases demanding higher capacity and a enhanced data rate, a lower latency, and a more flexible and scalable network able to offer better user Quality of Experience (QoE). The Internet of Things (IoT) is one of these use cases. It has been spreading in the recent past few years, and it covers a wider range of possible application scenarios, such as smart city, smart factory, and smart agriculture, among many others. However, the limitations of the terrestrial network hinder the deployment of IoT devices and services. Besides, the existence of a plethora of different solutions (short vs. long range, commercialized vs. standardized, etc.), each of them based on different communication protocols and, in some cases, on different access infrastructures, makes the integration among them and with the upcoming 5G infrastructure more difficult. This paper discusses the huge set of IoT solutions available or still under standardization that will need to be integrated in the 5G framework. UAVs and satellites will be proposed as possible solutions to ease this integration, overcoming the limitations of the terrestrial infrastructure, such as the limited covered areas and the densification of the number of IoT devices per square kilometer.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 309 ◽  
Author(s):  
Hind Bangui ◽  
Said Rakrak ◽  
Said Raghay ◽  
Barbora Buhnova

Cloud computing has significantly enhanced the growth of the Internet of Things (IoT) by ensuring and supporting the Quality of Service (QoS) of IoT applications. However, cloud services are still far from IoT devices. Notably, the transmission of IoT data experiences network issues, such as high latency. In this case, the cloud platforms cannot satisfy the IoT applications that require real-time response. Yet, the location of cloud services is one of the challenges encountered in the evolution of the IoT paradigm. Recently, edge cloud computing has been proposed to bring cloud services closer to the IoT end-users, becoming a promising paradigm whose pitfalls and challenges are not yet well understood. This paper aims at presenting the leading-edge computing concerning the movement of services from centralized cloud platforms to decentralized platforms, and examines the issues and challenges introduced by these highly distributed environments, to support engineers and researchers who might benefit from this transition.


2013 ◽  
Vol 357-360 ◽  
pp. 2849-2853
Author(s):  
Qv Li Ma ◽  
Zong Ren Xie ◽  
Jian Wei Lv

The life cycle management of navy vessels quality is presented, and the quality of various phases in the navy vessels life cycle is academically described. On the management of phase quality, taking shipbuilding as an example, the definition of the phase quality is provided, requirements of comprehensive quality management are discussed, which include the total-staff participation, the whole process of management, comprehensive approach and concept of quality. On the integrated quality management of the navy vessels life cycle, the mode that staffs participating in the various stages of life cycle, and integrated requirements of ship design, modeling & simulation environment are proposed. Technical support and realization of the quality management of navy vessels life cycle are presented, which has laid the foundation for the realization of the quality management of navy vessel.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-28
Author(s):  
Siddhartha Vadlamudi

The evolvement of IT has open new doors in connecting many devices to the worldwide web that successively produce data around the physical setting using the IoT. However, the system of message turns out to be slightly intricate in human specialization-internet of things communication for the reason that the IoT is a system including diverse objects transferring data This study examines the hypothetical pathway by which the changes in source attribution that is multiple against single and specialization that is multi-functionality against single functionality of IoT devices affect the quality of human- internet of things interaction. The result from the study obtained from 80 participants that took part in the experiment shows that multiple source attribution improves the condition of information basically for the low-involvement people supports further probes the multiple source effects. However, this study recommends improvement of attribution source and human specialization-IoT.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lin Wen

With the revolution in Internet and digital technology, every organization is adopting digital things to carry out their day-to-day activities. Internet of Things (IoT) is a concept that is used to connect various devices over the Internet to increase the production and quality of service, deliver a huge amount of data in seconds, and automate the processes. IoT implementation in the health sector has changed the typical setup into smart and intelligent setup. With the “smart” and “Intelligent” abilities of IoT devices such as sensors and with the collaboration of humans and computers, physical processes can be monitored and, based on the received data, optimal decisions can ultimately be taken. IoT applications in healthcare will increase flexibility, patient’s care, quality of health, and control of diseases. As the IoT combines various heterogeneous devices and the inappropriate determination of the degree of characteristics for Internet of healthcare (IoH) devices may affect the efficiency of services, this research is carried out with the use of decision support system and application of fuzzy analytic network process (fuzzy ANP) was used for optimal determination of the degree of characteristics for IoH devices based on unique properties which would greatly increase the efficiency of industry. The experimental results are efficient and show the usefulness of the approach.


Author(s):  
Dan-Radu Berte

Abstract IoT, or the Internet of Things, has been in use since circa 1999. It defines a next chapter in the evolution of the Internet where computing devices embedded in everyday objects are able to send and receive data themselves. In recent years miniaturization and economies of scale brought a boon of new devices to the consumer and enterprise market, prompting Gartner to predict over 20bln live IoT devices by 2020. However, the definition of IoT is loose and, for the purpose of predicting trends or discussing security, formulating a clear understanding of the term is crucial. In fact, Internet of Things is a term only mostly used by the media, academia and the industry. Customers in the consumer space refer to the technologies by their benefit describing term of “Smart Home”. A quick analysis of this gap shows how it’s entirely possible no knowledge permeates the business and market worlds because of the incompatible terms used. As more devices, OSes and heterogeneous platforms entrench the concept of a new digital lifestyle, the new “Digital Kingdom” opens its doors to radical disruption, such as the latest massive Mirai and Reaper attacks. Our ability to correctly define the IoT, it’s platforms and components, should lead to better market dynamics and better preparedness, as one can’t secure something that can’t be defined. This paper proposes to further understand the IoT by exploring available definitions, reiterating misuse and equivocal perception, concluding with a more suiting, contemporary definition.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4489
Author(s):  
Roberto Girau ◽  
Raimondo Cossu ◽  
Massimo Farina ◽  
Virginia Pilloni ◽  
Luigi Atzori

Virtualization technologies are characterizing major advancements in the Internet of Things (IoT) arena, as they allow for achieving a cyber-physical world where everything can be found, activated, probed, interconnected, and updated at both the virtual and the physical levels. We believe these technologies should apply to human users other than things, bringing us the concept of the Virtual User (VU). This should represent the virtual counterpart of the IoT users with the ultimate goal of: (i) avoiding the user from having the burden of following the tedious processes of setting, configuring and updating IoT services the user is involved in; (ii) acting on behalf of the user when basic operations are required; (iii) exploiting to the best of its ability the IoT potentialities, always taking always account the user profile and interests. Accordingly, the VU is a complex representation of the user and acts as a proxy in between the virtual objects and IoT services and application; to this, it includes the following major functionalities: user profiling, authorization management, quality of experience modeling and management, social networking and context management. In this respect, the major contributions of this paper are to: provide the definition of VU, present the major functionalities, discuss the legal issues related to its introduction, provide some implementation details, and analyze key performance aspects in terms of the capability of the VU to correctly identify the user profile and context.


Author(s):  
Yong Kyu Lee

This chapter reviews the internet of things (IoT) as a key component of a smart city and how it is applied to consumers' daily lives and business. The IoT is a part of information and communication technology (ICT) and is considered a powerful means to improve consumers' quality of life. The “thing” could be any object which has internet capability, such as wearable devices and smart TVs/phones/speakers. Several studies have identified driving factors that have led consumers to adopting them, but also concerns of consumers' resistance to IoT devices. The three major fields of application of IoT technologies were selected to review the role of the IoT in consumers' daily lives and business.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2239
Author(s):  
Mohamed Ahmed ◽  
Chantal Taconet ◽  
Mohamed Ould ◽  
Sophie Chabridon ◽  
Amel Bouzeghoub

In the logistic chain domain, the traceability of shipments in their entire delivery process from the shipper to the consignee involves many stakeholders. From the traceability data, contractual decisions may be taken such as incident detection, validation of the delivery or billing. The stakeholders require transparency in the whole process. The combination of the Internet of Things (IoT) and the blockchain paradigms helps in the development of automated and trusted systems. In this context, ensuring the quality of the IoT data is an absolute requirement for the adoption of those technologies. In this article, we propose an approach to assess the data quality (DQ) of IoT data sources using a logistic traceability smart contract developed on top of a blockchain. We select the quality dimensions relevant to our context, namely accuracy, completeness, consistency and currentness, with a proposition of their corresponding measurement methods. We also propose a data quality model specific to the logistic chain domain and a distributed traceability architecture. The evaluation of the proposal shows the capacity of the proposed method to assess the IoT data quality and ensure the user agreement on the data qualification rules. The proposed solution opens new opportunities in the development of automated logistic traceability systems.


Sign in / Sign up

Export Citation Format

Share Document