scholarly journals Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 140
Author(s):  
Abdulaziz Fatani ◽  
Abdelghani Dahou ◽  
Mohammed A. A. Al-qaness ◽  
Songfeng Lu ◽  
Mohamed Abd Abd Elaziz

Developing cyber security is very necessary and has attracted considerable attention from academy and industry organizations worldwide. It is also very necessary to provide sustainable computing for the the Internet of Things (IoT). Machine learning techniques play a vital role in the cybersecurity of the IoT for intrusion detection and malicious identification. Thus, in this study, we develop new feature extraction and selection methods and for the IDS system using the advantages of the swarm intelligence (SI) algorithms. We design a feature extraction mechanism depending on the conventional neural networks (CNN). After that, we present an alternative feature selection (FS) approach using the recently developed SI algorithm, Aquila optimizer (AQU). Moreover, to assess the quality of the developed IDS approach, four well-known public datasets, CIC2017, NSL-KDD, BoT-IoT, and KDD99, were used. We also considered extensive comparisons to other optimization methods to verify the competitive performance of the developed method. The results show the high performance of the developed approach using different evaluation indicators.

Author(s):  
Iqbal H. Sarker ◽  
Yoosef B. Abushark ◽  
Fawaz Alsolami ◽  
Asif Irshad Khan

Cyber security has recently received enormous attention in today’s security concerns, due to the popularity of the Internet-of-Things (IoT), the tremendous growth of computer networks, and the huge number of relevant applications. Thus, detecting various cyber-attacks or anomalies in a network and building an effective intrusion detection system that performs an essential role in today’s security is becoming more important. Artificial intelligence, particularly machine learning techniques, can be used for building such a data-driven intelligent intrusion detection system. In order to achieve this goal, in this paper, we present an Intrusion Detection Tree (“IntruDTree”) machine-learning-based security model that first takes into account the ranking of security features according to their importance and then build a tree-based generalized intrusion detection model based on the selected important features. This model is not only effective in terms of prediction accuracy for unseen test cases but also minimizes the computational complexity of the model by reducing the feature dimensions. Finally, the effectiveness of our IntruDTree model was examined by conducting experiments on cybersecurity datasets and computing the precision, recall, fscore, accuracy, and ROC values to evaluate. We also compare the outcome results of IntruDTree model with several traditional popular machine learning methods such as the naive Bayes classifier, logistic regression, support vector machines, and k-nearest neighbor, to analyze the effectiveness of the resulting security model.


In computer network, security of the network is a major issue and intrusion is the most common threats to security. Cyber attacks detection is becoming more enlightened challenge in detecting these threats accurately. In network security, intrusion detection system (IDS) has played a vital role to detect intrusion. In recent years, numerous methods have been proposed for intrusion detection to detect these security threats. This survey paper study examines recent work in the topic of network security, machine learning based techniques as well as a discussion of the many datasets that are commonly used to evaluate IDS. It also explains how researchers employ Machine Learning Based Techniques to detect intrusions


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 754 ◽  
Author(s):  
Iqbal H. Sarker ◽  
Yoosef B. Abushark ◽  
Fawaz Alsolami ◽  
Asif Irshad Khan

Cyber security has recently received enormous attention in today’s security concerns, due to the popularity of the Internet-of-Things (IoT), the tremendous growth of computer networks, and the huge number of relevant applications. Thus, detecting various cyber-attacks or anomalies in a network and building an effective intrusion detection system that performs an essential role in today’s security is becoming more important. Artificial intelligence, particularly machine learning techniques, can be used for building such a data-driven intelligent intrusion detection system. In order to achieve this goal, in this paper, we present an Intrusion Detection Tree (“IntruDTree”) machine-learning-based security model that first takes into account the ranking of security features according to their importance and then build a tree-based generalized intrusion detection model based on the selected important features. This model is not only effective in terms of prediction accuracy for unseen test cases but also minimizes the computational complexity of the model by reducing the feature dimensions. Finally, the effectiveness of our IntruDTree model was examined by conducting experiments on cybersecurity datasets and computing the precision, recall, fscore, accuracy, and ROC values to evaluate. We also compare the outcome results of IntruDTree model with several traditional popular machine learning methods such as the naive Bayes classifier, logistic regression, support vector machines, and k-nearest neighbor, to analyze the effectiveness of the resulting security model.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 656
Author(s):  
Xavier Larriva-Novo ◽  
Víctor A. Villagrá ◽  
Mario Vega-Barbas ◽  
Diego Rivera ◽  
Mario Sanz Rodrigo

Security in IoT networks is currently mandatory, due to the high amount of data that has to be handled. These systems are vulnerable to several cybersecurity attacks, which are increasing in number and sophistication. Due to this reason, new intrusion detection techniques have to be developed, being as accurate as possible for these scenarios. Intrusion detection systems based on machine learning algorithms have already shown a high performance in terms of accuracy. This research proposes the study and evaluation of several preprocessing techniques based on traffic categorization for a machine learning neural network algorithm. This research uses for its evaluation two benchmark datasets, namely UGR16 and the UNSW-NB15, and one of the most used datasets, KDD99. The preprocessing techniques were evaluated in accordance with scalar and normalization functions. All of these preprocessing models were applied through different sets of characteristics based on a categorization composed by four groups of features: basic connection features, content characteristics, statistical characteristics and finally, a group which is composed by traffic-based features and connection direction-based traffic characteristics. The objective of this research is to evaluate this categorization by using various data preprocessing techniques to obtain the most accurate model. Our proposal shows that, by applying the categorization of network traffic and several preprocessing techniques, the accuracy can be enhanced by up to 45%. The preprocessing of a specific group of characteristics allows for greater accuracy, allowing the machine learning algorithm to correctly classify these parameters related to possible attacks.


The Intrusion is a major threat to unauthorized data or legal network using the legitimate user identity or any of the back doors and vulnerabilities in the network. IDS mechanisms are developed to detect the intrusions at various levels. The objective of the research work is to improve the Intrusion Detection System performance by applying machine learning techniques based on decision trees for detection and classification of attacks. The methodology adapted will process the datasets in three stages. The experimentation is conducted on KDDCUP99 data sets based on number of features. The Bayesian three modes are analyzed for different sized data sets based upon total number of attacks. The time consumed by the classifier to build the model is analyzed and the accuracy is done.


2021 ◽  
Author(s):  
Farah Jemili ◽  
Hajer Bouras

In today’s world, Intrusion Detection System (IDS) is one of the significant tools used to the improvement of network security, by detecting attacks or abnormal data accesses. Most of existing IDS have many disadvantages such as high false alarm rates and low detection rates. For the IDS, dealing with distributed and massive data constitutes a challenge. Besides, dealing with imprecise data is another challenge. This paper proposes an Intrusion Detection System based on big data fuzzy analytics; Fuzzy C-Means (FCM) method is used to cluster and classify the pre-processed training dataset. The CTU-13 and the UNSW-NB15 are used as distributed and massive datasets to prove the feasibility of the method. The proposed system shows high performance in terms of accuracy, precision, detection rates, and false alarms.


Author(s):  
Monali Gulhane, T.Sajana

Nowadays many trends are being in the area of medicine to predict the human behaviour and analysis of patient behaviour is being studied but the technical difficulty of cost efficient method to predict the behaviour of user is overcome in the proposed researched methodology .The mental health of the used can lead to good immunity system to be healthy in this pandemic of COVID-19. Hence After a detailed study on different human health disease classification techniques it is found that machine learning techniques are reliable for the feature extraction and analysis of the different human parameters. CNN is the most optimum choice of classification of diseases. Feature extraction and feature selection is automatically managed by the CNN layers, which reduces the training speed. Techniques like sensor-based feature extraction like EEG, ECG, etc. will be further explored using machine learning algorithms for detection of early detections of diseases from human behavior on different platforms in this research. Social behavior and eating habits play a vital role in disease detection. A system that combines such a wide variety of features with effective classification techniques at each stage is needed. The research in this paper contributes the review of the human behavior analysis through different body parameters, food habits and social media influences with social behavior of the person. The main objective of research is to analysis theses different area parameters to predict the early signs of the diseases.


Sign in / Sign up

Export Citation Format

Share Document